

	 (
CAN Interface Description
)

	[image:]
	

	 www.crosscontrol.com
	

	
	

	CAN Interface Description
	Date: Aug 11, 11

	
	

	
	

	
	

	Common templates
	Date: Jun 17, 11

	
	

	
	

	Common templates
	Date: Jun 17, 11

www.crosscontrol.com
Contents

Revision history	2
1.	INTRODUCTION	4
1.1.	Purpose	4
2.	CAN Communication Services	5
2.1.	Summary of interface functions.	5
2.2.	CanOpenEx	6
2.3.	CanOpen	7
2.4.	CanClose	8
2.5.	CanSend	9
2.6.	CanSendEx	11
2.7.	CanReceive	13
2.8.	CanReceiveEx	16
2.9.	CanEnableRemoteFrame	18
2.10.	CanDisableRemoteFrame	20
2.11.	CanEnumRemoteFrame	21
2.12.	CanGetStatistics	23
2.13.	CanGetLastTimeStamp	25
2.14.	CanGetDeviceHandle	26
3.	Configuration	27
Trade Mark, etc.	28

[bookmark: _Toc300854106]Revision history
	Rev
	Date
	Author
	Comments

	P1.0
	98.05.25
	Göran Nordin
	First preliminary version.

	P1.1
	98.06.15
	Göran Nordin
	Function CanOpenEx added.
Added parameter bRtr to CanSend.
It is now possible to specify messages you do not want to receive to CanReceive.
Type names changed according to coding rules

	P1.2
	98.09.10
	Göran Nordin
	Functions CanGetDeviceHandle and CanGetLastTimeStamp added.

	P1.3
	98.12.02
	Göran Nordin
	Parameter pTimeStamp returned from CanGetLastTimeStamp changed.

	P1.4
	2000.05.15
	Göran Nordin
	Functions CanSendEx, CanReceiveEx and CanGetStatistics added. Configuration added. Windows NT and Windows CE specific restrictions added.

	P1.5
	2000.05.23
	Göran Nordin
	Description of parameter frameTypeSel to CanReceiveEx corrected. Description of when CanSendEx and CanReceiveEx sets last error to ERROR_NOT_SUPPORTED more detailed.

	P1.6
	2000.08.21
	Göran Nordin
	Functions CanAddRemoteReply and CanRemoveRemoteReply added.

	P1.7

	2005.03.10
	Anders Sipuri
	Functions CanAddRemoteReply and CanRemoveRemoteReply removed.
Functions CanEnableRemoteFrame , CanDisableRemoteFrame and description for CanEnumRemoteFrame added.

	P1.8
	2011.06.17
	P-O Andersson
	Document updated to the new CrossControl document template.

	P1.9
	2011.08.11
	P-O Andersson
	Changed the function CanReceiveEx. In Can.dll v6.1.0.0 it can receive only remote frames if needed.

[bookmark: _Toc231791058][bookmark: _Toc300854107]INTRODUCTION
[bookmark: _Toc231791059][bookmark: _Toc300854108]Purpose
This documents describes the software interface to the CAN Communication Services
[bookmark: _Toc231791062][bookmark: _Toc300854109]CAN Communication Services
The CAN Communication Services enables the caller to receive messages from or send messages to CAN interfaces. The caller may receive messages from an interface without "stealing" messages from other users that have opened the same interface.
[bookmark: _Toc231791063][bookmark: _Toc300854110]Summary of interface functions.
CanOpenEx	Opens the CAN interface with Super User privilege.
CanOpen	Opens the CAN interface with Normal User privilege.
CanClose	Closes the CAN interface.
CanSend	Sends a message on the CAN interface.
CanSendEx	Sends a standard or extended frame on the CAN interface.
CanReceive	Receives a message from the CAN interface.
CanReceiveEx	Receives a standard or extended frame from the CAN interface.
CanEnableRemoteFrame	Enables reception of a specified remote frame.
CanDisableRemoteFreme	Disables reception of the specified remote frame.
CanGetStatistics	Returns performance and error counters.
CanGetLastTimeStamp	Returns the time stamp for the last received message.
CanGetDeviceHandle	Returns the handle to the CAN device.
CanEnumRemoteFrame	Enumerates the enabled remote frames.
[bookmark: _Toc231791064][bookmark: _Toc300854111]CanOpenEx
Syntax
CanHandle
CanOpenEx(
	LPCTSTR pNetName
)

Description
Opens the CAN interface with Super User privilege. Only one user in the system may have Super User privilege for a specific interface. The caller may send messages with any CAN id.

Include files
#include "can.h"

Parameters
pNetName	The CAN net name, CAN1-CANn. Either an ANSI or UNICODE string, depending on if _UNICODE and UNICODE is defined or not.
Return value
A handle to the opened interface or NULL if operation failed. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because of that another user already has called CanOpenEx then GetLastError will return ERROR_SHARING_VIOLATION.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
-
[bookmark: _Toc231791065][bookmark: _Toc300854112]CanOpen
Syntax
CanHandle
CanOpen(
	LPCTSTR pNetName
)

Description
Opens the CAN interface with Normal User privilege. There is no restriction on the number of users with Normal User privilege for a specific interface. The caller may only send messages with CAN id's within the configured Normal User range.

Include files
#include "can.h"

Parameters
pNetName	The CAN net name, CAN1-CANn. Either an ANSI or UNICODE string, depending on if _UNICODE and UNICODE is defined or not.
Return value
A handle to the opened interface or NULL if operation failed. If operation failed then "GetLastError" can be used to get more information of the error.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
See example of CanSend or CanReceive.
[bookmark: _Toc231791066][bookmark: _Toc300854113]CanClose
Syntax
BOOL
CanClose(
	CanHandle hInterface
)

Description
Closes the CAN interface. Disables the caller from receiving messages from or sending messages to the CAN interface.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
See example of CanSend or CanReceive.
[bookmark: _Toc231791067][bookmark: _Toc300854114]CanSend
Syntax
BOOL
CanSend(
	CanHandle hInterface,
	CanMsg *pCanMsg,
	DWORD dataLength,
	BOOL bRtr
)

Description
Sends a message on the CAN interface.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
pCanMsg	A pointer to the message to send.
The structure of the message is as follows:
typedef struct _CanMsg {
	CanMsgId	id;
	UCHAR		data[CAN_MAX_MSG_LENGTH];
} CanMsg;
id is the CAN message identifier.
data is the data bytes in the CAN message.
CAN_MAX_MSG_LENGTH is equal to 8.
dataLength	The number of data bytes to send.
bRtr	Should be set to TRUE if message is to be sent as a remote frame.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because the interface was opened with CanOpen and the CAN id of the message is outside the Normal User range then GetLastError will return ERROR_ACCESS_DENIED.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
This example shows how to send a CAN message on the first interface, i e “CAN1”. Of course opening and closing of an interface should be performed at start-up and termination and not before every sending as in the example.
void mySenderFunc(void)
{	
	CanHandle hInterface;

	CanMsg myCanMsg = { 1, {10, 20, 30, 40, 50, 60, 70, 80} }

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (!CanSend(hInterface, &myCanMsg, 8 , FALSE))
		printf("!!ERROR, %lu when calling \"CanSend\"\n", GetLastError());
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());

}
[bookmark: _Toc231791068][bookmark: _Toc300854115]CanSendEx
Syntax
BOOL
CanSendEx(
	CanHandle hInterface,
	CanMsg *pCanMsg,
	DWORD dataLength,
	BOOL bRtr,
	CanFrameType frameType
)

Description
Sends a standard or extended frame on the CAN interface.

Include files
#include "can.h"

Parameters
hInterface	See "CanSend".
pCanMsg	See "CanSend".
dataLength	See "CanSend".
bRtr	See "CanSend".
frameType	Should be set to:
CAN_FRAME_STANDARD if message is to be sent as a standard frame.
CAN_FRAME_EXTENDED if message is to be sent as an extended frame.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because the interface was opened with CanOpen and the CAN id of the message is outside the Normal User range then GetLastError will return ERROR_ACCESS_DENIED. If the operation failed because the frame type selected by frameType is not supported by the CAN controller or not configured for the driver then "GetLastError" will return ERROR_NOT_SUPPORTED.

Restrictions (Windows NT)
Sending extended frames requires that the CAN controller supports extended frames, which is the case for Intel 82527 but not for Philips 82200.

Restrictions (Windows CE)
Same as the "Restrictions (Windows NT)".

Example
This example shows how to send a standard and extended CAN frame on the first interface, i e “CAN1”. Of course opening and closing of an interface should be performed at start-up and termination and not before every sending as in the example.
void mySenderFunc(void)
{	
	CanHandle hInterface;

	CanMsg myCanMsgStd = { 1, {10, 20, 30, 40, 50, 60, 70, 80} }
	CanMsg myCanMsgExt = { 0x800, {10, 20, 30, 40, 50, 60, 70, 80} }

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (!CanSendEx(
			hInterface,
			&myCanMsgStd,
			8,
			FALSE,
			CAN_FRAME_STANDARD))
		printf("!!ERROR, %lu when calling \"CanSendEx\"\n",
			GetLastError());
	
	if (!CanSendEx(
			hInterface,
			&myCanMsgExt,
			8,
			FALSE,
			CAN_FRAME_EXTENDED))
		printf("!!ERROR, %lu when calling \"CanSendEx\"\n",
			GetLastError());
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());

}
[bookmark: _Toc231791069][bookmark: _Toc300854116]CanReceive
Syntax
BOOL
CanReceive(
	CanHandle hInterface,
	CanMsg *pCanMsg,
	LPDWORD pDataLength,
	CanMsgId *pCanMsgSel,
	DWORD milliseconds
)

Description
Receives a message from the CAN interface.
The caller may receive messages from the interface without "stealing" messages from other users that have called CanOpen.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
pCanMsg	A pointer to the buffer where the received message should be stored.
The structure of the message is as follows:
typedef struct _CanMsg {
	CanMsgId	id;
	UCHAR		data[CAN_MAX_MSG_LENGTH];
} CanMsg;
id is the CAN message identifier.
data is the data bytes in the CAN message.
CAN_MAX_MSG_LENGTH is equal to 8.
pDataLength	A pointer to the number of data bytes in the received message.
pCanMsgSel	A pointer to an array specifying which messages that should be received. The first element, (pCanMsgSel[0]), should specify the number of CAN message ID's in the array
If pCanMsgSel[0] is positive then any of IDs in the array will be received.
If pCanMsgSel[0] is negative then any of IDs that is not in the array will be received.
If any message is requested then NULL should be supplied.
milliseconds	Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if no messages are received. If milliseconds is zero, the function checks if there are any messages and returns immediately. If milliseconds is INFINITE, the function does not return until a message is received.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because of that the time-out interval expired then GetLastError will return ERROR_TIMEOUT.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
This example shows how to receive any message with an infinite time out period on the first interface, i e “CAN1”. Of course opening and closing of an interface should be performed at start-up and termination and not before every reception as in the examples.
void myReceiverFunc1(void)
{	
	DWORD dataLength;
	CanHandle hInterface;
	CanMsg myCanMsg;
	CanTimeStamp timeStamp;
	int i;

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (CanReceive(hInterface, &myCanMsg, &dataLength, NULL, INFINITE))
	{
		CanGetLastTimeStamp(&timeStamp);
		printf("CAN message received\n");
		printf("\tTime stamp (ns): %lu%lu\n",
			timeStamp.high, timeStamp.low);
		printf("\tId: %#x\n", myCanMsg.id);
		printf("\tData:");
		for (i=0; i < dataLength; i++)
		{
			printf(" %#2x", myCanMsg.data[i]);
		}
	}
	else
	{
		printf("!!ERROR, %lu when calling \"CanReceive\"\n",
			GetLastError());
	}
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());
}

This example shows how to receive messages with id 3 and 5 with a time out period of 500 ms on the first interface, i e “CAN1”.
void myReceiverFunc2(void)
{	
	DWORD lastError, dataLength;
	CanHandle hInterface;
	CanMsg myCanMsg;
	int i;

	CanMsgId CanMsgSel[] = {2, 3, 5};

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (CanReceive(hInterface, &myCanMsg, &dataLength, CanMsgSel, 500))
	{
		printf("CAN message received\n");
		printf("\tId: %#x\n", myCanMsg.id);
		printf("\tData:");
		for (i=0; i < dataLength; i++)
		{
			printf(" %#2x", myCanMsg.data[i]);
		}
		printf("\n");
	}
	else
	{
		lastError = GetLastError();
		
		if (lastError == ERROR_TIMEOUT)
			printf("Time out occurred when receiving CAN messages\n");
		else
			printf("!!ERROR, %lu when calling \"CanReceive\"\n",
				GetLastError());
	}
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());
}

[bookmark: _Toc231791070][bookmark: _Toc300854117]CanReceiveEx
Syntax
BOOL
CanReceiveEx(
	CanHandle hInterface,
	CanMsg *pCanMsg,
	LPDWORD pDataLength,
	CanMsgId *pCanMsgSel,
	CanFrameType frameTypeSel,
	CanFrameType *pFrameType,
	DWORD milliseconds
)

Description
Receives a standard or extended frame from the CAN interface.
The caller may receive messages from the interface without "stealing" messages from other users that have called CanOpen.
If the hardware does not support the RemoteFrame-functions, remote frames are always received with this function. It is possible to only receive remote frames.

Include files
#include "can.h"

Parameters
hInterface	See "CanReceive".
pCanMsg	See "CanReceive".
pDataLength	See "CanReceive".
pCanMsgSel	See "CanReceive".
frameTypeSel	Specifies which frame types that should be received.
If frameTypeSel is set to CAN_FRAME_STANDARD then only standard frames matching pCanMsgSel is received.
If frameTypeSel is set to CAN_FRAME_EXTENDED then only extended frames matching pCanMsgSel is received.
If frameTypeSel is set CAN_FRAME_STANDARD | CAN_FRAME_EXTENDED then either standard or extended frames matching pCanMsgSel is received.
	If frameTypeSel is set to any of the above, in combination with CAN_FRAME_REMOTE_ONLY, then only remote frames will be received.
pFrameType	A pointer to the frame type of the received message.
CAN_FRAME_STANDARD or CAN_FRAME_EXTENDED if a standard or an extended frame is received.
CAN_FRAME_REMOTE if the frame is remote.
milliseconds	See "CanReceive".
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because of that the time-out interval expired then GetLastError will return ERROR_TIMEOUT.
If the operation failed because the frame type selected by frameTypeSel is not supported by the CAN controller or not configured for the driver then "GetLastError" will return ERROR_NOT_SUPPORTED.

Restrictions (Windows NT)
Receiving extended frames requires that the CAN controller supports extended frames, which is the case for Intel 82527 but not for Philips 82200.

Restrictions (Windows CE)
Same as the "Restrictions (Windows NT)".

Example
This example shows how to receive any message of either standard or extended frame type with an infinite time out period on the first interface, i e “CAN1”. Of course opening and closing of an interface should be performed at start-up and termination and not before every reception as in the examples.
void myReceiverFunc(void)
{	
	DWORD dataLength;
	CanHandle hInterface;
	CanMsg myCanMsg;
	CanFrameType frameType;

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (!CanReceiveEx(
			hInterface,
			&myCanMsg,
			&dataLength,
			NULL,
			CAN_FRAME_STANDARD | CAN_FRAME_EXTENDED,
			&frameType
			INFINITE))
	{
		printf("!!ERROR, %lu when calling \"CanReceiveEx\"\n",
			GetLastError());
	}
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());
}

[bookmark: _Toc231791071][bookmark: _Toc300854118]CanEnableRemoteFrame
Syntax
BOOL
CanEnableRemoteFrame(
	CanHandle hInterface,
	CanMsgId id
)

Description
Enables reception of the specified remote frame. This function is only needed/supported by hardware that uses 82527 alike message objects. For other hardware this function will fail.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
id	id is the CAN message identifier of the remote frame to enable.

Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because the interface was opened with CanOpen and the CAN id of the message is outside the Normal User range then GetLastError will return ERROR_ACCESS_DENIED.
If the operation failed because there is no more room for more remote replies then GetLastError will return ERROR_NO_MORE_ITEMS, see restrictions for the Intel 82527 Controller. If the operation failed because the hardware doesn't need/support the function then GetLastError will return ERROR_NOT_SUPPORTED.

Restrictions (Windows NT)
The restrictions for remote frame handling are hardware dependent.
For the Intel 82527 Controller:
1. It is not possible to enable extended remote frames if reception of both standard and extended frames is enabled, see configuration of Mode.
2. The number of remote replies is limited to 13.

Restrictions (Windows CE)
Same as the "Restrictions (Windows NT)".

Example
This example shows how to enable a reply to a remote frame with id 1.
int main(int argc, char** argv)
 {	
	CanHandle hInterface;

	CanMsgId myRemoteFrameId = 1;

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (!CanEnableRemoteFrame(hInterface, myRemoteFrameId))
		printf("!!ERROR, %lu when calling \"CanEnableRemoteFrame\"\n",
			GetLastError());

			.
			.
			.

	if (!CanDisableRemoteFrame(hInterface, myRemoteFrameId))
		printf("!!ERROR, %lu when calling \"CanRemoveRemoteReply\"\n",
			GetLastError());
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());

}
[bookmark: _Toc231791072][bookmark: _Toc300854119]CanDisableRemoteFrame
Syntax
BOOL
CanDisableRemoteFrame(
	CanHandle hInterface,
	CanMsgId id
)

Description
Disables reception of the specified remote frame. This function is only needed/supported by hardware that uses 82527 alike message objects. For other hardware this function will fail.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
id	The CAN message identifier of the remote frame to disable.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.
If the operation failed because the remote frame reply specified by id has never been added, then GetLastError will return ERROR_NOT_FOUND. . If the operation failed because the hardware doesn't need/support the function then GetLastError will return ERROR_NOT_SUPPORTED.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
See example of CanEnableRemoteFrame.
[bookmark: _Toc231791073][bookmark: _Toc300854120]CanEnumRemoteFrame
Syntax
DWORD
CanEnumRemoteFrame(
	CanHandle hInterface,
	ULONG index,
	CanMsgId *pId,
	CanFrameType *pFrameType
)

Description
Enumerates the enabled remote frames. This function is only needed/supported by hardware that uses
82527 alike message objects. For other hardware this function will fail.

Include files
#include "can.h"

Parameters
hInterface	A handle to the opened interface.
index	Specifies the index of the subkey to retrieve. This parameter should be zero for the first call to the CanEnumRemoteReply function and then, as long as ERROR_SUCCESS is returned, incremented for subsequent calls until ERROR_NO_MORE_ITEMS are
	returned.
pCanMsgId	A pointer to the message id of the remote frame .
pFrameType 	A pointer to the frame type of the remote frame.

Return value
ERROR_SUCCESS or some error code. If operation failed because there are no more remote frame
replies then ERROR_NO_MORE_ITEMS is returned.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example

//
// Enumerate remote frame replies
//
CanHandle hInterface;
DWORD lastError;
ULONG i;	
CanMsg canMsg;
CanFrameType frameType;

.
.
.

i = 0;
while ((lastError = CanEnumRemoteFrame(
			hInterface,
			i,
			&canMsg.id,
			&frameType)) == ERROR_SUCCESS)
{
.
.	
.
.
i++;
}

.
.
.

[bookmark: _Toc231791074][bookmark: _Toc300854121]CanGetStatistics
Syntax
BOOL
CanGetStatistics(
	CanHandle hInterface,
	CanStatistics *pStatistics
)

Description
Returns performance and error counters.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
pStatistics	A pointer to the performance and error counters.
The structure of the performance and error counters is as follows
typedef struct _CanStatistics {
	ULONG	rxMsgCntr;
	ULONG	rxDataCntr;
	ULONG	txMsgCntr;
	ULONG	txDataCntr;
	ULONG	hwOvrnCntr;
	ULONG	busWarnCntr;
	ULONG	busOffCntr;
	ULONG	appOvrnCntr;
	ULONG	rxFifoOvrnCntr;
	ULONG	rxFifoMax;
} CanStatistics;
rxMsgCntr is the number CAN messages received so far.
rxDataCntr is the number of data bytes received so far.
txMsgCntr is the number CAN messages transmitted so far.
txDataCntr is the number of data bytes transmitted so far.
hwOvrnCntr is the number of times that the CAN controller has detected a receive overrun.
busWarnCntr is the number of times that the CAN controller has experienced a bus warning condition.
busOffCntr is the number of times that the CAN controller has entered the bus off state.
appOvrnCntr is the maximum number of overruns that have occurred for a client application. If this occurs then the client application needs to be optimized.
rxFifoOvrnCntr is the number of times that a overrun has occurred in the type-ahead receive fifo. If this occurs then the size of the type-ahead receive fifo needs to be increased, see configuration value "RxFifoSize".
rxFifoMax is the maximum number of messages that the type-ahead receive fifo have contained.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
Element rxFifoOvrnCntr and rxFifoMax are not implemented.

Example
This example shows how the statistics are retrieved.
void myStatisticsFunc(void)
{	
	CanHandle hInterface;
	CanStatistics statistics;

	if ((hInterface = CanOpen("CAN1")) == NULL)
		printf("!!ERROR, %lu when calling \"CanOpen\"\n", GetLastError());

	if (!CanGetStatistics(hInterface, &statistics))
	{
		printf("!!ERROR, %lu when calling \"CanGetStatistics\"\n",
			GetLastError());
	}
	
	if (!CanClose(hInterface))
		printf("!!ERROR, %lu when calling \"CanClose\"\n", GetLastError());
}

[bookmark: _Toc231791075][bookmark: _Toc300854122]CanGetLastTimeStamp
Syntax
BOOL
CanGetLastTimeStamp(
	CanHandle hInterface,
	CanTimeStamp *pTimeStamp
)

Description
Returns the time stamp for the last sent or received message.

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
pTimeStamp	A pointer to the time stamp.
The structure of the time stamp is as follows
typedef struct _CanTimeStamp {
	ULONG	low;
	ULONG	high;
} CanTimeStamp;
low is the lower 32 bits of the time stamp in 100-nanoseconds.
high is the upper 32 bits of the time stamp in 100-nanoseconds.
Return value
TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be used to get more information of the error.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
See example of CanReceive.

[bookmark: _Toc231791076][bookmark: _Toc300854123]CanGetDeviceHandle
Syntax
HANDLE
CanGetDeviceHandle(
	CanHandle hInterface
)

Description
Returns the handle to the CAN device. The handle can be used in DeviceIoControl calls

Include files
#include "can.h"

Parameters
hInterface	A handle to an opened interface.
Return value
A handle to the CAN device or INVALID_HANDLE_VALUE if operation failed. If operation failed then "GetLastError" can be used to get more information of the error.

Restrictions (Windows NT)
-

Restrictions (Windows CE)
-

Example
-
[bookmark: _Toc231791077][bookmark: _Toc300854124]Configuration
The configuration parameters are stored in the registry key: \Registry\Machine\System\CurrentControlSet\Services\<Driver name>\Parameters\Device<0-n>

Driver name is a string that varies depending on the hardware. Examples are:
Can82200IpME, Can82527IpME.

The device number, 0-n, is a number that identifies the interface. Configuration for the interface "CAN1" is stored in Device0, configuration for the interface "CAN2" is stored in Device1 and so on.

Summary of configuration values
	Name: [footnoteRef:1]) [1: Names in bold are required.]

	Type:
	Description:

	Base
	DWORD
	Should be set to the address base of the CAN controller registers.

	BaudRate
	String
	Can either be set to an explicit baud-rate or to initialization values of the CAN controller's registers. The latter is hardware dependent.
For example for an explicit baud-rate of 125 kBit/s the field should be set to "125000".

For an 82527 Controller it can also be set to:
"DSC=<value>, BTR0=<value>, BTR1=< value >".

	BusOffRecoverDelay
	DWORD
	Should be set to the delay in milliseconds to wait before an attempt should be made to recover from a bus off state. If this field is omitted then the delay is set to 0.

	EnableTimeStamp
	DWORD
	Should be set to "1" if incoming messages should be time stamped. If this field is omitted then no time stamping is made.

	Irq
	DWORD
	Should be set to the IRQ-number of the CAN controller.

	Mode
	DWORD
	This field is hardware dependent.

For an 82527 Controller it should be set to:
"Standard" if standard frames should be sent/received.
"Extended" if extended frames should be sent/received.
"Standard, Extended" if both standard and extended frames should be sent/received.
If this field is omitted then only standard frames are sent/received.

	RxFifoSize
	DWORD
	Should be set to the size of the type-ahead receive fifo. If this field is omitted then the size is set to 8.

	TxUserIdRange
	String
	Should be set to the normal user range. For example if a normal user is allowed to send CAN messages greater than 0, then the field should be set to "1-0xffffffff".
If this field is omitted then a normal user is allowed to send any messages.

	
	

	
	

	CAN Interface Description

	Date: Jun 17, 11

	
	

	
	

	CCpilot XM
Software guide
	Date: Aug 11, 11

www.crosscontrol.com
The information herein is preliminary, supplied without any guarantees and can change without prior notification.

27
www.crosscontrol.com
The information herein is preliminary, supplied without any guarantees and can change without prior notification.
[bookmark: _Toc290323067][bookmark: _Toc300854125]Trade Mark, etc.
© 2011 CrossControl AB
All trademarks sighted in this document are the property of their respective owners.
CCpilot is a trademark which is the property of CrossControl AB.

Intel is a registered trademark which is the property of Intel Corporation in the USA and/or other countries. Linux is a registered trademark of Linus Torvalds. Microsoft and Windows are registered trademarks which belong to Microsoft Corporation in the USA and/or other countries.

CrossControl AB is not responsible for editing errors, technical errors or for material which has been omitted in this document. CrossControl is not responsible for unintentional damage or for damage which occurs as a result of supplying, handling or using of this material. The information herein is supplied without any guarantees and can change without prior notification.

	[image:]
	CrossControl AB
P.O. Box 83 • SE-822 22 Alfta • Sweden
Phone: +46 271 75 76 00• info@crosscontrol.com • www.crosscontrol.com

image1.jpeg
cresscentre.l

