Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

CrossFire IX

Freely Programmable — Programming Manual

crosscontrol

www.crosscontrol.com

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
Contents
T, INITOAUCTION ...ttt se e s ee s st e s s e sesasesssnesessssssnsasesassssasessssasssasassnns 5
2, VAIAITY oottt st rre s st ss st e s et s s s s e s sasss b e s aesssas e s sassesanesensasenasesenes 5
3. LICENSING .ottt et e s e e s e s s et e se s s et e s e s ee e s e st a e e ee e s ae e e ee e seeaee e s eaesenseaaeannnnen 5
4. Development enViroNMENL............. . et e e st e s e s sae e s e s saa e s e s raaaenas 6
B, DEDUGGING ...ttt et eesreeesessaee e s essaae e sessrae e sessaae e sessaae e s e s saaa e e e naeesessraaesessrnaasasnnnes 6
6. BOOT LOUAEN ... ieeieceeircceeetrceeeereceeesseeaee s s aeessessanessessanesssssnsesssssasesssssasesssssasessssasesssssasanss 6
7. FOIAEr SHUCTUIE........coeeeeeeceee et ceerscseee s s saeessessane s s s anesssssnnesssssanesssssnsesssssnsesssnsnnanss 7
8. ArChIteCIUIAl OVEIVIEW ...ttt see e se et e s e s sane e s e s saae e sesssaeesesssnaesessnnaesssnnnns 8
9. Getting started with Atollic TrueSTUDIO for STM32..........cccccerriercerrecreerrereeersecnneessesneessesanenes 9
9.1. Opening and building A PrOJECT ... e e et e e e e e e 9
9.2. Atollic TrueSTUDIO for STM32 settings for CrossFire 1Xuuoucveeeeccieeeecieee e 13
9.3. Common operations in ATOIlIC TrUESTUDIOuvveieieiieeeeeeeee e 13
D4, USING SWYV TIOCE .ttt ettt e et e e e e e e e tta e e e e e e e eeeatttbaaaaaeeeesesssasssaeaaeenns 15
9.5. DOWNIOAAING DINAIIES ..eiiiiiie ettt ettt et e e e e e ata e e e e taeeeeasbeeesnnseeaens 20
9.6. Additional tips for using Atollic TrueSTUDIO for STM32ovveeiiiiieeiieeeeee e 20
9.7. Common problems AN SOIUTIONS........ciiciiieieiiee ettt e e s e e s seveeeeas 21
10.Getting started with IAR Embedded Workbench..............coiirnonveenicneeeencneeeeneneeeeneseeenns 21
10.1. Opening and building G PrOJECT ... 21
10.2. V] aTei 1Te) o 'e] o) 111 nVe H RSP PSPP 22
10,3, STACK ittt et e e e et e e st e e e ba e e s b e e e ta e e b e e e tae e tbeesabeeeraeenareenn 23
11.Programming the CrossFire IX ... iiiieeeccceeercceeeecccreeeesssreee e e ssaeeessssssesssssanssssssnanens 24
11.1. General CrossFire IX programming recommendations.........ccccveeeeecveeeeecveeeeeennen. 24
11.2. PrOJECT STTUCTUIE ..ttt e e e 24
11.3. CrOSSFIrE IX COTE APl ...ttt et e e e tae e e s era e e e eereeas 26
11.4. Pre-proCESSOr AEIINES .o e e e e e e es 26
11.5. NN A1 151 0 0T T RPN 27
11.6. Y T [T e o] o TSP UPR 27
11.7. 1) (ST] o) 1SRRI 28
11.8. USING The WOTCNAOG .ttt ettt st 29
11.9. Performance CONSIAEIATIONS ...ccc.viiiieiiieeeee e e e e e 29
TT.10. VEISION NMUMIDET ...oiiiiiiee ettt e et e e et e e eeata e e e eeata e e e e aaaeeeennareeaeas 29
TT 1T DIOGNOSTICS vttt ettt ettt ettt et e e e et e e e e tte e e e e ta e e e eeabaeeeeasaeeeenasseeeeaasseeeeansseeaens 30
T2 EXAMIPIES.....ueeiiceeieeeeteeecnreeeeecstreeeessnteeesssnreeessssessssssseessssssessssssnesessssnsesssssnesessssssesssssnssesssnnsasns 30
12.1. The BASIC [/O EXAMIPDIE ...iiciiiie ettt et e et e et e e e ebae e e eeaaraeeeas 30
12.2. The CANOPEN SIAVE EXAMPIE .coeiiiiiieee ettt e e e e et rre e e e e e s eeeearaaaeeas 31
LR =T {137« TR OO POTOPPRRN 32
14.Using the CrossFire IX HardWareuuiiiiriiiicceetccceeeeccceee e scceeeesssaeeesssnsesssssnnesssssnaaens 32
14.1. HOPOWOIE TESOUINTESiiiieeiitie ettt ett ettt e et e e et e e e st e e e s abeeesssbaeeesnbaeeesnseeas 32
14.2. USING The CrossFIre IX 1/Q ettt ettt e e vee e e s arae e e eereeas 33
14.3. USING The FRAM MEMOTY ...ttt ettt ettt e e e trae e e s arae e e eereeas 35
14.4. (@ N e (1= PSSP 36
14.5. ADC ettt ettt e et e bt e e bt e e bt e e eate e e beeeeabeeeteeebaeeebeenans 37
14.6. T 11] o ISP UPR 37
14.7. UTIIITY FUNCHIONS ettt et e e e e et e e e eata e e e eenreeas 37

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

T5.TOOIS ...ttt te st ssas e s et sesane s s s e sesasessnesesstsssasesesassssaresessesssasesessasesatessssesesasasen 38
15.1. INSTAING CroSSFIre IX TOOISvviieeiiie ettt et et e e e et a e e 38
15.2. Using the CrossFire IX Tool for CANORENuiiiicieie e 39
15.3. Using the CrossFire IX Tool (not CANOPEN VEISION)uviieciiiiieiiieeeciiee e 39

16.References...........
17.Trademark, etc....

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
Revision history
1.0 First release CMM 2018-06-18
1.1 Updates after review, added testing section, CMM 2018-07-04
1.2 Updates in boot loader section CMM 2018-07-04
1.3 Additions for data logger API CMM 2018-07-05
1.4 Data logger API now has its own document. Added info CMM 2018-08-20
about interrupt priorities. Clarification that OEM should
only put code in OEM_ Init(), OEM_ Execute() and
OEM_ MSTick(). OEM_ Init() is now called last in the init
sequence.
1.5 Rename from CrossFireIX CANopen Freely Programmable | CMM 2018-08-21
to CrossFireIX Freely Programmable as there is no
requirement to use CANopen
1.6 Added chapter about performance CMM 2018-08-24
1.7 Review CMM 2018-09-10
1.8 Updates about timers CMM 2018-09-25
1.9 Added info about swv trace. Improved structure. CMM 2018-10-01
1.10 | Updates after name change of some functions CMM 2018-10-19
1.11 | Added architecture overview CMM 2018-10-24
1.12 | Split of pre-processor defines between OEM and CMM 2018-10-26
CrossControl
1.13 | Clarification regarding USE_PWMI CMM 2018-11-07
1.14 | Added chapters about examples and project structure. CMM 2018-11-12
1.15 | Updates after adding the drivers/target subfolder. Now CMM 2018-11-27
Atollic 9.1.0 is recommended. Updated architectural
diagram.
1.16 | Added chapter about controlling the I/0O CMM 2018-11-28
1.17 | Added info about setting defines in Atollic CMM 2018-11-29
1.18 | Updates for the SDK 0.9 release CMM 2018-11-30
1.19 | Review CMM 2018-12-03
1.20 | Updated API documentation for FRAM and CAN CMM 2018-12-04
1.21 | Review, improved structure, added summary of more API CMM 2018-12-07
functions
1.22 | Review, improved structure, updates after changes in Util_ | CMM 2018-12-10
function API
1.23 | Review CMM 2018-12-11

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
1.24 | Added Basic I/O Example CMM 2018-12-12
1.25 | Added documentation for frequency and encoder inputs CMM 2018-12-17
1.26 | Watchdog is now a separate driver, not included in Core CMM 2018-12-19
API
1.27 | Updated tools section CMM 2018-12-21
1.28 | Added more details of the I/O example. Updated info about | CMM 2019-01-02
CAN tests.
1.29 | Minor changes after review from ERJ CMM 2019-01-17
1.30 | Updates for version 1.21 of core api CMM 2020-03-16
1.31 | Updates for 1.2.1.0 version of core api CMM 2021-01-26
1.32 | Updates for 1.2.3.0 version of core api CMM 2022-03-15

1. Infroduction

CrossFire IX is the 2nd product on CrossControl’s new I/0 Controller platform. It is a compact 32-
bit I/O module, designed for advanced hydraulics control in agricultural and construction
equipment. It offers 22 I/O channels, versatile and configurable in software.

CrossFire IX Freely Programmable SDK is a package containing drivers and documentation to
make it possible for OEMs to program the CrossFire IX in C/C++. To make the programming of the
CrossFire IX as easy as possible, an extensive library (IX Core API) is available for the OEM. This
library contains functions for controlling the inputs and the outputs of the CrossFire IX in an easy
way. The library also contains a number of utility functions.

The CrossFire IX exists in two versions: “CANopen” and “Data Logger Edition”. The CANopen
name is a bit misleading as there is no requirement to run CANopen on this version. However,
CrossControl has a ready-made CANopen slave software for this unit.

The “Data Logger Edition” contains some additional functionality: an RTC, an external FLASH
memory and a Wi-Fi module. To use these functions, the Data Logger API is used. This API cannot
be used with the CANopen version of the unit. Please read the document “CrossFire IX - Freely
Programmable - Data Logger Edition - Programming Manual.docx” for more information.

2. Validity

This manual is valid for the 1.3 release of the CrossFire IX Freely Programmable SDK.

3. Licensing

The CrossFire IX Freely Programmable SDK is free to use and modify when running on
CrossControl hardware. See the trademark section for details.

The CANopen example is using a CANopen stack from SYS TEC. If this stack will be used, it is
necessary to buy a license for the CANopen stack separately from SYS TEC.

a8

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

4. Development environment

There are two alternative development environments for the CrossFire IX tested by CrossControl:
e Atollic TrueSTUDIO for STM32 9.3.0 is a free IDE based on Eclipse/GCC.

e IAR Embedded Workbench (EWARM) 7.40. A licence for the IAR compiler must be bought
separately from IAR.

CrossControl recommends Atollic TrueSTUDIO mainly due to that the CrossControl examples are
made for this environment and that it is free.

5. Debugging

It is highly recommended use an IAR I-jet/Segger J-link/ST-link V2 or similar debug probe for
program download and debugging. The CrossFire IX has a standard 10 pin JTAG/SWD debug
connector. It is necessary to buy a CrossFire IX without casing to be able to reach the debug
connector.

The processor used in CrossFire IX supports both JTAG and SWD. When using SWD a number of
additional features compared to JTAG are available.

6. Boot Loader

CrossFire IX is running a boot loader that makes it possible to upgrade the CrossFire IX firmware
over the CAN-bus (including the boot loader itself). The boot loader is only delivered as a binary.
There are no pins in the connector to perform firmware upgrade not using the bootloader.

To make it possible to go to program upgrade mode it is necessary that the application has
functionality for jumping to the boot loader at some trigger, for instance when receiving a certain
CAN message or when activating a digital input. Otherwise, there will be no way to trigger the
execution of the boot loader. This is done by calling the function Util_JumpToBoot() when the
trigger is received. All example projects have this functionality.

It is also necessary that the application flags to the boot loader that the application is working
properly. Failing to do so will make the unit stay in the boot loader the next cold-boot after a
software upgrade. This is done by calling the function Util_WriteApplicationOKtoFRAM(). This
function is used to make sure that if upgrading to a non-working application, the bootloader will
still be reachable. This call is normally done in the CrossControl init code.

The boot loader uses the CANopen protocol. This will be the case even if the main application is
using another CAN protocol like J1939. The node-id and baud-rate used by the boot loader is read
from the FRAM memory. There is also a mode where the node-id is read from the digital input pins
of the CrossFire IX. This means that even if CANopen is not used at all in the main application, it is
important that the FRAM address where node-id and baud rate is read is assigned appropriate
values, otherwise the boot-loader might not work. If changing these values, use the access functions
in the Core API because the data also contains a checksum that needs to be updated.

Definition FRAM address Access Function

FRAM_NODE_ID 0x0DAO void
Set_V_0x2010 Node_ID Value(unsigned

char value)

&

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

FRAM_BAUDRATE 0x0DA4 void
Set_V_0x2011_Baudrate_Index(unsigned

char value)

FRAM_NODE_ID_ PIN_ FILTER | ox0DAS void Set_NodeIdPinFilter(unsigned

short value)

The boot loader is located in the bottom of the FLASH memory. Therefore it is necessary that the
user application start address is set to 0x08006000.

FLASH Memory Address Description
0x08000000 - 0x08005FFF Boot Loader Area (24KB)
0x08006000 - 0x0803FFFF Application Area (256 — 24 = 232KB)

The supplied linker files for IAR/Atollic sets up the start address to 0x08006000.

Programming the CrossFire IX (using the boot loader) is done with the CrossFire IX Tool for
Windows. Please read the tools section for more information.

7. Folder structure

The CrossFire IX CANopen Freely Programmable SDK will be delivered in a .zip file. The .zip
contains the following folders:

Delivery — Contains already built binaries for the CANopen version. Used for reference and test.
Documentation — Programming documentation.

Doxygen — Configuration files for Doxywizard that can be used to generate API documentation.
There is also HTML folders containing already generated HTML Doxygen documentation.

Reference Material — Reference manuals for the processor and the most important circuits on the
CrossFire IX PCB.

Tools — Contains the IX Tool and the SakNfo PC tool.
Src — Contains the actual source code.
Src/Application — High level application code.

Src/CANopen-stack — Contains the SYS TEC CANopen stack and files configuring the stack
and connecting the stack to the application.

Src/Drivers — Drivers for the CrossFire IX hardware. Drivers located in this folder are
written by CrossControl.

Src/Drivers/Target/CMSIS — Contains CMSIS (Cortex Microcontroller Software Interface
Standard) start-up and init code.

Src/Drivers/Target/STM32F37x_StdPeriph_ Driver - Contains ST Std peripheral drivers.

Src/Project — Contains project files for IAR Embedded Workbench 7.40 and Atollic
TrueSTUDIO.

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

Src/Examples — Example applications.
Src/CoreAPI — Header files for the CrossFire IX Core APIL.
Src/Utilities — Additional utility files.

8. Architectural Overview

5TM32f373
CANopen slave

Utilities

drin
[odrvbxcan)

The OEM should only modify the block marked as “OEM Code” in the diagram above. To make sure
the OEM code is executed at the right time, the OEM should include the “OEMExtension.h” and
implement the functions in the OEM Extension Interface. These functions are called by the
CrossControl init and main loop code.

The OEM Extension Interface contains the following functions:

e OEM._ Init() — Code to set up inputs and outputs according to the needs of the OEM as well
as OEM specific init code.

e OEM_MsTick() — A callback called every millisecond where the OEM can add any timing
related code. This code is called from interrupt so execution must be very fast.

e OEM_ Execute() — A function called from the main loop where the OEM can add its own
code that will be executed cyclically.

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

Example application for CrossFire IX - Read I/0 and send on CAN

(C)26818 CrossControl, only to be used on CrossControl hardware

#include "can.h"
#include "utility.h”

#include "OEMExtension.h”
#include "inputmanager.h”

#include "outputmanager.h”
#include “"currentcentrol.h”

static int ledTickMs = 8;
static int ledFreq = 188@;

const static int SEND_INTERVAL MS = 1888;

static unsigned long sendMessageTimer = 8;

WP ® W00 w0 W R ® 000 O R

/f As this function is called from an interrupt, make sure to do ne lengthy operations here!
void OEM_MSTick(void)
i

ledTickMs++;

if(ledTickMs > (ledFreq / 2))

Util SetGreenLED(TRUE);

}

if(ledTickMs »= ledFreq)

Wr P ® W& ;

Util_SetGreenlLED({FALSE);
ledTickMs = @;
b
h

// Initialize CAN and I/0
void OEM_Init(void)

L L Wi L L L Lu L L R R RS R ORI R R ORI R R

CAN_Config(CAN 1068, MODE_STANDARD);

Eilifmibe @oe < om

OutputManager_SetMode (OUTPUTCHANNEL_8, MODE_DIGITALOUT);
OutputManager_SetMode (OUTPUTCHANNEL_1, MODE_DIGITALOUT);

'
o

47 OutputManager_SetMode(OUTPUTCHANNEL_2, MODE_PiM);

48 OutputManager_SetPWMFrequency (OUTPUTCHANNEL_2, 5@);
49

56 OutputManager_SetMode{OUTPUTCHANNEL_3, MODE_PWM);
51 OutputManager SetPWMFrequency(OUTPUTCHANNEL 3. 48@8):

The OEM has access to all functions in the Core API, the Data Logger API (only for the Data Logger
Edition) and the CrossControl CAN Driver. If needed the OEM can access the CrossControl Drivers
layer directly (or even the ST Std Peripheral Drivers or the hardware), but this is not recommended
as this might give problems if upgrading the a newer versions of the CrossFire IX Freely
Programmable SDK. Please contact CrossControl in case you need to change any code outside the
OEM Code box.

The parts regarding CANopen is optional and is only needed if CANopen support is needed (SYS
TEC CAN driver, SYS TEC CANopen stack, CANopen integration and CANopen slave application).
If using these parts a separate license from SYS TEC is needed.

It is of course possible to add CANopen support with another CANopen stack but it is possible to
save a lot of time using the already available SYS TEC CANopen integration.

9. Getting started with Atollic TrueSTUDIO for STM32

“Atollic TrueSTUDIO for STM32” is a commercially enhanced C/C++ IDE based on open source
components”. This means that Atollic TrueSTUDIO for STM32 is basically Eclipse/GCC/CDT/GDB
with enhanced support for STM32 processors.

9.1. Opening and building a project
Open Atollic TrueSTUDIO for STM32 9.1.0 or later

Select a workspace directory. A workspace in Eclipse is not the same as a workspace in IAR or
Visual Studio. You never check out a workspace from version control system. A workspace in

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

Eclipse is a local folder on your computer where you keep your personal Eclipse settings. You can
have several workspaces and switch between them with “File/Switch Workspace”. This can be
handy if you are working with several languages like Java and C++ and want to have separate
settings between the two. When switching workspace, Eclipse will shut down and restart using the
new workspace.

Select a directory as workspace |
Atollic TrueSTUDIO for STM32 uses the workspace directory to store its preferences and development artifacts.

Workspace: Ci\Users\calle\Atallic\ TrueSTUDIO\STM32_workspace 9.0 -
|

[] Use this as the default and do not ask again

¥ Recent Workspaces

[oK | [cancel |

Now it is time to open the CrossFire IX project. There is no function called “open project” in
Eclipse. Instead you should now import the project into your workspace. Select File/Import and
then “Existing Projects into Workspace” from the import dialog. Browse for the folder containing
the CrossFire IX projects.

"B tmport B %

Select
)]
Create new projects from an archive file or directory. E 5

Select an import wizard:

type filter text

T

4 (= General -
& Archive File
(% Existing Projects inte Workspace
[File System
] Preferences
[Projects from Folder or Archive
a4 = C/Cre
[E] C/C++ Executable
¥ C/C++ Project Settings F
Existing Code as Makefile Project
b = CVS
b [Bxample projects
b Git
b = Install
n_ 7= RuniNehun

SRR

m
TR

@ < Back Next > Finish

B impart

]

Import Projects -

Select a directory to search for exsting Eclipse projects T
4

% Select root directary: C\proj\ Crossfire 5K\ Software| CrossFire i-CANopen- FreehProgrammable!Sec\Project v [prove. |
Select archive fle:
Projects:
] CorePl (Ci\prof\Crossfire SK\Software\ CrossFiee IX-CANopen-FreelyProgrammable\Src\ProjectAtollicC rossFirelXC oreAPl)
A XSaftwa

pem ey B [omdean]

[Reteesn |

Options
Search for nested projects
Capy projects inta workspace
Hide projects that siready exit in the werkspace

Working sets

Add project to warking sets New..

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

Make sure that the checkbox “Copy projects into workspace” is not checked. This means that the
projects are not copied to your workspace, only links are created. You can now select which projects
you want to import. Click Finish and your project/projects will be imported.

00 G+ - D Foslyrogrmm o T b STUEE = & i
Fie 198 Souce Ao Ve Mo Sewch Pt Wedow Mol
W c LEAGGE IS D T ~o-l@0 -8 o= B
» e - ;s Oue -
ogrammatie = e

3 CromprdiciresbProgammeble

To build the project use Project/Build Project.

In case you want to rebuild everything select Project/Rebuild Project. In some cases you might also
want to run Project/Clean project to make sure everything is rebuilt.

If you have a debug-probe connected you can now select Run/Debug to download the application to
the CrossFire IX and start debugging. You have to set up a debug configuration to be able to debug
the project.

Elb o e - - [
Create, manage, and run configurations ﬁ‘\
EIEER Name: CrossFirelXCANLogger.el
type filter text [E) Main (%5 Debugger > Startup Scripts | 1 Source| (7] Common
C/C++ Application Debug probe | SEGGER J-LINK -
[E] C/C+ + Attach to Application
[E] C/C++ Postmortem Debugge: || || G Connection Seftings
C/C++ Remote Application ® Autostart local GDBserver Host name or IP address | localhost
 [£] Embedded C/C-+ Applicatior |||) Connectto remote GDB server Port number pEEn
[&] CrossFirelXCANLoggerelf
& Launch Group GDB Server Command Line Options

Interface

© SWD) JTAG Initial Speed (4000~ | kHz [[] Use specific J-Link /N

Device STM32F373VC

JTAG Sean Chain

) Auto) Manual 0 0
Misc
[F1se J-Link script file Search Project...| [Browse.

[7]Enable ive expressions
] Verify flash download

Thread-anare RTOS support
Select RTOS variant: |[NoRTOS v

Trace

Trace system: | SWV (Serial Wire Viewer) -
Clock Settings
CoreClock: 720 MHz

Port number: 2332

« i »

Filter matched 7 of 7 items PPY
©

.-

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

A debug configuration basically sets up which type of debugger will be used an in which mode
(JTAG/SWD).

To make it possible to download and debug code directly from the debugger, the following code has
to be added to the “Target Software Startup Scripts” available at debug configurations. It will set up
the stack pointer, the program counter and the interrupt vector register to the start of the
application instead of to the start of the boot loader.

set *@xe@00edd8 = Ox6000

set $sp = *(unsigned int*)0x6000
set $pc = *(unsigned int*)0x6004

Enable flash download
moenitor flash download = 1

Load the program executable
load

Reset the chip to get to a known state, Remove "monitor reset” command
if the code is not located at default address and does not run by reset,
maonitor reset

set “Oxe000ed0d = 0G000
set Ssp = *(unsigned int*)0x6000
set Spe = *(unsigned int*)0:6004

Set a breakpoint at main().
threak main

Run to the breakpoint.
continue

The CrossFire IX example projects have two build configurations. There is a debug and a release
configuration. You can switch configuration with Project/Manage Build Configurations...

You can reach the most important settings from Project/Build Settings...

To create a .binary file that can be downloaded with the bootloader, activate “Convert build output”
in the Output format settings.

[E] Properties for CrossFireXCANopen =] =
type filter text Settings - - <
» Resource
Builders
4 C/C++ Build [[Debug [Active] ~| [Menage]
Build Variables
Environment
Logging © Target Settings | © Toalchain Version| & Tool Settings | & Build Steps | Build Artifact | i} B + | >
Settings
Tool Cgham Editor (3 Target «|[¥] Convert build output
» C/C++ General (2 General Format [Bmw ,]
CMSIS-SVD Settings (2 Symbols
Project References. (2 Directories
Review (2 Debugging
Run/Debug Settings (& Miscellaneous
 Task Repository 4 8 C Compiler
WikiText 5 Target
5 General
i Symbols

3 Directories

1 Optimization
i Debugging
% Warnings

B Miscellaneous
4) Cr+ Compiler
5 Target

2 General

I

5 Symbols
5 Directories
3 Optimization
53 Debugging
5 Wamings
3 Miscellaneous
4 B Cow Linker
5 Target
= General
B Libraries
1 Optimization
£ Miscellaneous
4 & Other

2 Reports

(2 Output format

Restore Defaults Apply

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

9.2. Atollic TrueSTUDIO for STM32 settings for CrossFire IX

The following settings have been made in the example projects:

The linker script stm32_flash.ld has been modified so that the first 24KB of the FLASH is reserved
for the bootloader.

/* Specify the memory areas */

MEMORY

{
FLASH (rx) . ORIGIN = ©x08006000, LENGTH = 232K
RAM (xrw) . ORIGIN = ©x20000000, LENGTH = 32K

MEMORY_B1 (rx) : ORIGIN = ©x60000000, LENGTH = oK
}

There is also a specific section to make the version number located in a specific address in flash
memory:

.VERSION_SECTION ©x08006200 :
{

KEEP(*(.VERSION_SECTION)) /* keep my variable even if not referenced */
} > FLASH
Optimization for the debug build is set to (-00) and for the release build is set to (—o02).

C/C++ Standard is set to C11/C++11.

9.3. Common operations in Atollic TrueSTUDIO

There is a formatting file in .xml format that can be imported to make sure to get the same
formatting as is used previously in the project. The file is located under src/project.

E Properties for CrossFireIXCANLogger & PS
type filter text Formatter - r v
> R
e.source Enable project specific settings Configure Workspace Settings...
Builders
» C/Ce+ Build ’crossfire[)(v] ’ Edit...] ’ Remove
a C/C++ General
> Code Analysis ’ New...] i Import...]
Documentation Preview:
File Types
bonmattex xa sample source file for the code formatter preview
Indexer
Language Mappings #include <math.h>

Paths and Symbols

Preprocessor Include P: class Point

m

- i i
CM.SIS SVD Settings public:
PrDJ.EctReferences Point(double x, double y) :
Review x(x), y(y)
Run/Debug Settings
> Task Repository))
WikiText double distance(const Point® other) const;
double x;
double y;
i i
4 2
Il m b ’Restore Defaults] ’ Apply]
I:?EI [OK] [Cancel]

It is also possible to set the formatting globally for all projects.

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
[E] preferences I N
type filter text Formatter [CR = R
| o oo 3 ot Pt sy stinge
Appearance Active profile:
4 Build [crossfirelx o[Edit. |[Remowe
Build Targets
Build Varibles
Console Preview:
Environment 7
Logging * A sample source file for the code formatter preview
» Mskefile Editor =/
Settings #include <math.h>
Code Analysis Class Point
4 Code Style {
Code Templates public:
Formatter = Point(double x, double y) :
Mame Style x(x)» y(y)
» Organize Includes {
i Debug double distance(const Point& other) const;
4 Editor
» Content Assist double x;
Folding double y;
i Hovers b
i Mark Occurrences double Point::distance(const Pointd other) const
Il Save Actions {
Scalability double dx = x - other.x;
Syntax Coloring double dy = y - other.y;
Templates return sqre(dx * dx +dy = dy);
Typing
File Types m
Indexer
Language Mappings
 New C/C++ Project Wizard
- Property Pages Scttings =

Task Tags «

:
Template Default Values

1> CMSIS Packs 5 Restore Defaults Apply

@

For advanced debugging there is access to the processor SFRs and registers.

B SFRs 33 | 1l Registers
type filter text

Register Address Value
a4 scs
4 SysTick
35 NvIC
STM32F373
34 GPIoA
4 6pio
3% GPIOD
&4 GPIoC
4 GPICE
4 6pIOF
34 TsC

% CRC
43 Flash
34 Rcc
4 DMAL
& Dma2
&8 2
34 TIms
4 T
4 TIve
&4 v
4 TIvLs
4 Tive
35 TIT
&3 usaRTL
34 UsART2
4 UsaRT3
3% sen
54 s
4 sP
5 2S2edt
B 283ext
&4 AnC

slelelelelolelolelvleloolelole ol oo ool oo v v o |- @ o =

The amount of RAM/FLASH used can be seen in the “Build Analyzer”

s Build Analyzer I == Static Stack Analyzer e

CrossFireIXCANopen.elf - /CrossFireIXCANopen/Debug - 2018-09-06 14:23
Memory Regions

Memeary Details

Region Start address End address Size Free Used Usage (%)
008006000 0x08040000 2328 94,55 KB 13745 KB [5925% |
0:20000000 0:20008000 2KB 343KB 28,57 KB 89,28%
R MEMORY BL 0+650000000 060000000 0B 0B 0B

Memory settings is done directly in the linker file stm32_flash.ld

CrossFire IX - Freely P

rogrammable — Programming Manual

€ EEEE

[Project Explorer &2

» 55 CoreAPl
4 (5 CrossFirelXCANLogger
» # Binaries
v il Includes
> (G DataLoggerAPl
> 5 Drivers
> G Main
> B OEM
> &8 Utilities
» (= Debug
> (= Release
> [CoreAPI
=

Iy platform _feature.n

stm32_ flash.ld
» 5 CrossFirelXCANopen
£ CrossFireIXCANopenSlaveMini
5 CrossFirelXCANWifiGateway
% CrossFirelXFota
> 4% CrossFirelXThingSpesk
> {5 DLEProductionTest

File Edit Source Refactor View MNavigate Search Project Run Window Help
Y-S -SSR S=H PR
= B [testcan.c

B&|le ~

oo |0 -BE-RE

[¢) OEMTemplatec [¢ flashc [d platform_fe.. wific [d) inputmana
23 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

24 TMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

25 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

26 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

27 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
280UT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

29 SOFTWARE.

=/

[T
[

34 /* Entry Point */

35 ENTRY(Reset_Handler)

36

37 /* Highest address of the user mode stack */
35_estack = 0x20003000; /* end of 32K RAM */

|] CrossFirelXCANLogger.efflaunch 32

4@ /* Generate a link error if heap and stack don't fit into RaM */
41_Min_Heap Size = @; /* required amount of heap */
42 _Min_Stack_Size = @x188@; /* required amount of stack */

43

44 /* specify the memory areas */

45 MEMORY

46 {

47 FLASH (rx) : ORIGIN = Bx@3666000, LENGTH =
43 RAM (xrw) : ORIGIN = @x20000000, LENGTH

49 MEMORY Bl (rx) : ORIGIN = Bx60088808. LENGTH = 8K

Revision: 1.32
2022-03-15

Defines can be set in project properties/C/C++ Build/Settings/C Compiler/Symbols. If C++ is
used, make sure to go to C++ Compiler instead of C Compiler.

-
[E] Properties for CrossFireIXCANLogger

Resource

Builders

C/C++ Build
Build Variables
Environment

.

| Settings < < =

Configuration: [Release [Active]

-] [Mznage Configurations..

a

Logging) Tool Settings | & Build Steps | " Build Artifact [[} Binary Parsers | @ Error Parsers| <[
Settings
Tool Chain Editor (General Defined symbols IERZRE] & L
» C/C++ General 4 I Assembler 1
CMSIS-SVD Settings &2 Target CANRXBUFFERSIZE=1024
Project References (# General USE_STOPERIPH_DRIVER
Review (& Symbols STM32F3ITH
Run/Debug Settings (% Directories TARGET
» TaskRepository (& Debugging ;‘Bngﬂzmx_w
WikiText (2 Miscellaneous || jp 1enmion I
4 B C Compiler HSE_VALUE=16000000
(Target LOGGER_EDITION
(5 General USE_INPUT
(& Symbols

(& Directories

(2 Optimization

(% Debugging

(2 Warnings

(2 Miscellaneous
B C++ Compiler

2 Taraet e o = =

9.4. Using SWV Trace

To be able to perform advanced debugging you have to activate SWD mode and also set up Trace

over SWV.
Select Run/Debug

configurations. Select the Debugger tab.

CrossFire IX - Freely Programmable — Programming Manual

Mame: CrossFirelXCANLogger.elf
[E Main | %5 Debugger [Startup Scripts E . Source| [[] Common

Debug probe | SEGGER J-LINK hd

GDE Connection Settings
@ Autostart local GDB server Haost name or IP address localhost
(71 Connect to remote GDB server Port number 2331

GDEB Server Command Line Options

Interface

@ SWD () JTAG Initial Speed (4000 | kHz [] Use specific J-Link 5/N

Device STM32F373VC

ITAG Scan Chain

@ Auto Manual 1] 0
Misc

[] Use J-Link script file

[7] Enable live expressions

VEnfy flash download

Thread-aware RTOS support

Select RTOS variant: [No RTOS ~

Trace

Trace system: [SWV (Serial Wire Viewer) -
Clock Settings
Core Clock: 72.0 MHz

Port number. 2332

Revision: 1.32
2022-03-15

Make sure that “SWD?” is selected as Interface and Trace system is set up to “SWV”. Check that Core

Clock is set up to 72 Mhz.

9.4.1. SWV Statistical Profiling

Statistical profiling is very useful to find performance bottlenecks in the code.

Activate the “SWV Statistical Profiling” window and press the configure button.

El SWV Console (L, SWV Data Trace | = SWV Statistical Profiling 51

@ X = 08

Function % in use Samples Start address Size

Overflow packets: 0 PC Samples: 0

Activate “PC Sampling”.

CrossFire IX - Freely Programmable — Programming Manual

[E] Serial Wire Viewer settings for CrossFireIXCANLogger.elf

(o

Clock Settings

Clock Prescaler: | 12
SWO Clock: 6000,0 | kHz
Data Trace

Comparator 0
[l Enable

Var/Addr: | 0:0
Access: | Read/Write
Size: | Word

Generate: | Data Value

ITM Stimulus Ports

Core Clock: 72 MHz

Trace Events

[] CPL Cycles per instruction [_| EXC: Exception overhead

] SLEEP: Sleep cycles
[FOLD: Folded instructions

Comparator 1
[Tl Enable

Var/Addr: | 0:0

Access: | Read/Write

Sizes | Word

Generate: | Data Value

[]L5U: Load store unit cycles
[T EXETRC: Trace Exceptions

Comparator 2
[l Enable
Var/Addr: | 0:0

PC Sampling

[]Enable Resolution: |16384 - | Cycles/sample

Timestamps

Access: | Read/Write

Size: | Word

Generate: | Data Value

Comparator 3
[Tl Enable

Var/Addr: | 0:0
Access: | Read/Write
Sizes | Word

Generate: | Data Value

Privileged only ports: [_| Port 31.24 [|Port23.16 [|Port15.8 [|Port7.0

Enable port Z1O00C0CCO02¢ 23000000006 1500000000 700000

Now press the “record” button in the “SWYV Statistical Profiling” window.

Revision: 1.32
2022-03-15

After running the project for a while and after selecting “run/suspend “you will see something like

the following:

onsole Datz Trace FE SWV Statistical Profiling 52 %@‘@X = 0
Function % in use Samples Start address Size ‘s
CAN_ReceivelX() 10,42% 2371 0x800bd19 034
USART_GetMessagePtr) 9,78% 2230 0x800d201 098
PerformControl() 948% 2162 0x300d&0d] 3
UpdateledPattern() 942% 2150 0x800d6e9 050
OEM_Execute() 933% 2129 0x800da%d 0x234 |
ProcessUARTData() 718% 1637 0x800df21 0384
GPIO_ReadInputDataBit() 594% 1354 0x8009007 0:38
BSP_GetIgnitionSignal() 525% 1197 0x800b461 020
NVIC_EnablelRQ() 494% 1126 0x800bald 0x34
NVIC_DisablelRQ0) 493% 1125 0x800ba51 034
WIFL_GetMessagePtr() 467% 1065 0x8007197 0x20
BSP_CheckIgnition() 442% 1008 0x800b641 0354
CAN_HasOverrun() 371% 846 0x800bd2d 020
InputManager_IsAnyVolt.. 3,08% 702 0x8010575 018
BSP_ResetWIFI]) 214% 439 0x800b3el O5c
InitIXSystem() 1,00% 229 0x800d445 0x120
DMAL_Channel_IRQHa.. 086% 196 0x800cafs 00
L2eWrite() 0,58% 133 0x8007c79 098
SHANT GetElanGhstucll nsne; 114 NRNNOR2 A v27

Overflow packets: 0 PC Samples: 22813

9.4.2.

SWV Trace Log

Another useful debugging technique is the SWV trace log. By adding calls to ITM_ Port32() macro

defined in defines.h you can get close to realtime debug information in the SWV trace log.

There are 32 trace channels that can be used. To make this work you need to enable the channel(s)

you like to use.

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
s} -

o v

2 Console [J Memory &% FreeRTOS Task List [SWV Trace Log 57 | {0 Executables 3 @ % ‘ R = B

Index Type Data Cycles Time(s) Extra info

Select the configure button in the SWV Trace Log window and enable the desired channel in the

settings window. Also activate “Timestamps”. Close the settings window. Enable tracing by pressing
the "Record” button.

[E] Serial Wire Viewer settings for CrossFireIXCANLogger.elf =
Clock Settings Trace Events PC Sampling
Core Cleck: 72 MHz [CPL Cycles per instruction [7] EXC: Exception overhead [C]Enable Resolution: 16384 Cycles/sample
et [SLEEP: Sleep cycles [T]LSU: Load store unit cycles .
[“] FOLD: Folded instructions [~] EXETRC: Trace Exceptions Timestamps
SWOClock: | 60000 | kHz
Data Trace
Comparator 0 Comparator 1 Comparator 2 Comparator 3
[“|Enable [Enable [Enable [“]Enable
Var/Addr: | 0:0 Var/Addr: | 0:0 Var/Addr: | 00 VarfAddr: | 0:0
Access: | Read/Write Access: | Read/Write Access: |Read/Write Access: | Read/Write
Size: |Word Size: | Word Size: | Word Size: |Word
Generate: | Data Value Generate: | Data Value Generate: Data Value Generate: | Data Value

ITM Stimulus Ports

Enableport: S1OOOOOOMAT2 30000O00OECs 1sO0000OC s 7O0OEOC @ o

Privileged only ports: [Port31.24 [[Port23.16 [Port15.8 [[]Port7.0

Now you can add calls to your code

#ifdef _ GNUC__

int main{int argc, char ** argv)

#else

int main(int argc, void ** argv)

#endif
InititializeIxApplicationSw();
ITM Port32(1) = 1;
I2C_WriteTest();

ITM_Port32(1) = 23|

That will result in the information below in the SWV Trace Log.

B Console [J Memory & FreeRTOS Task List | [SWV TraceLog 52 | (3 Executables X@x|:E= O
Index Type Data Cycles Timels) Extra info

i i Port 1 i Tag33s1 303106043 me
1 M Port1 2 159232836 2211567 =

9.4.3. Redirecting printf to SWV Console
It is possible to redirect all printf calls to the SWV console. This can be very handy while debugging.

Make sure SWD debugging is enabled (see above) and that SWV is selected as trace system.

CrossFire IX - Freely Programmable — Programming Manual

Add a syscalls.c file to the project (select Minimal System Calls Implementation) from the

File/New/Other wizard.

E New B =
Select a wizard —a
Wizards:

type filter text

4 (= CVS -
| CVS Repository Location
;f Projects from CVS§
4 [Git
¥ Git Repository
a [= Library functions
f Tiny printf implementation
4 (= SVN
;‘.f Project from SVN
|2 Repository Location
4 [System calls
E Minimal System Calls Implementation -

m

@' < Back Next > Finish

Modify the _write function to write to write to ITM

int _write(int32_t file, uint8_t *pftr, int32_t len)

{
int i=0;
for(i=0 ; i<len ; i++)
ITM_SendChar(*ptr++);
return len;

To make it possible to use ITM_SendChar add
#include "stm32f37x.h"

In the beginning of the syscalls.c

Make sure that ITM port 0 is enabled

[E] Serial Wire Viewer settings for CrossFiraIXCANLogger.lf

==

Clock Settings Trace Events PC Sampling
Core Clock: 72 MHz [CPE Cycles per instruction [C] EXC: Exception overhead [C]Enable Resolution: | 16324
[T SLEEP: Sleep cycles [T LSU: Load store unit cycles

Clock Prescaler: | 12
[FOLD: Folded instructions [] EXETRC: Trace Exceptions Timestamps

SWO Clock: 6000,0 | kH:
oc o iz [ClEnable Prescaler |1

Cycles/sample

ITM Stimulus Ports

Data Trace
Comparator 0 Comparator 1 Comparator 2 Comparator 3
[l Enable [l Enable [l Enable [l Enable
Var/Addr: | 00 Var/Addr: | 00 Var/Addr: | 0:0 Var/Addr: | 0:0
Access: | Read/Write Access: | Read/Write Access: | Read/Write Access: | Read/Write
Size: | Word Size: | Word Size: | Word
Generate: | Data Value Generate: | Data Value Generate: | Data Value Generate: | Data Value

Enableport 3IOD0000O000# z0000000O1 5000000008 7O000000C 0

Privileged only ports: [Port31.24 [[]Port23.16 []Port15.8 []Port7.0

When program is in pause mode, press the “record” button in the SWV Console.

Revision: 1.32
2022-03-15

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
u# Mo Fault Detected PC
] SWY Console 32 e X|Eal+=0O

When resuming program, printf outputs will be seen in the SWV Console.

Note that printf is buffered so it is needed to add an printf(“\r\n”) to actually send data to the
output window.

Note that all example projects already have this functionality added.

9.5. Downloading binaries

Downloading a binary (like the bootloader) can be performed by adding the following to the “target
software startup scripts” - monitor loadbin "C:\proj\Crossfire IX\Software\CrossFire IX-
CANopen-FreelyProgrammable\Delivery\BootLoader DLE\IX_BOOT_DLE_2.0.4.0.bin" (of
course you need to adjust the path according to your needs).

[E] Debug Configurations 2

Create, manage, and run configurations

= -+,
= X | = 5T MName: CrossFirelXCANLogger.elf
type filter text [Z) Main [%5 Debugger | = Startup Scripts E Source | [C] Common
[E] C/C++ Application Target Hardware Initialization Script| Target Software Startup Scripts

[T] C/C+~+ Attach to Application
[£] €/C+~+ Postmortem Debugger
[E] €/C++ Remote Application

Enable flash download -
monitor flash dewnload = 1

l 4 [c] Embedded C/C++ Application # Load the program executable
[c] CrossFirelXCANLogger.elf menitor leadbin "C:\projiCrossfire SX\Software\CrossFire [X-CANopen-

‘ [E] CrossFirelXCANopen.elf FreelyProgrammable\Delivery\Bootloader DLE\IX_BOOT_DLE_2.01.0.bin"
El CmssF!re[XCAan.a.n.eIF # Reset the chip to get to a known state. Remove "monitor reset” command
[£] CrossFirel{CANWifiGateway 2 if the code is not located at default address and does not run by reset.
CrossFirel{CANWifiGateway. monitor reset

[T] CrossFirel{ThingSpeak.elf
DLEProductionTest.elf F5eta bre_akpomt &t main().
= Launch Group tbreak main

m

Run to the breakpoint.
continue

< 1 b

Filter matched 13 of 14 items

\/?)l Debug l I Close

9.6. Additional tips for using Atollic TrueSTUDIO for STM32

e Projects can be located in your local workspace folder but does not need to. Generally, it is
better to not keep your projects into your workspace folder.

e Aproject in Eclipse will automatically include all subfolders created under the project
folder. However, the folders do not need to be included into the build process. Removing a
folder from a project in Eclipse (excluding virtual folders) means that the folder will also be
removed physically from the disk. It is also possible to add links to files and folders. If
removing a link, the physical file will not be removed.

e Make sure you understand the difference between folders and virtual folders. A virtual
folder does not exist on your disk but only in Eclipse.

e There is no explicit way to save project settings in Eclipse. Changes in project settings are
automatically saved. Project file must be writable to make it possible for Eclipse to save
your settings. There is no warning if settings cannot be saved.

20

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

Eclipse uses the concept of “perspectives”. A perspective is a set of windows suitable for a
certain task. There is a C++ perspective and a debug perspective, but more perspectives can
be defined. A handy feature is the “reset perspective” function which can be found under
Window/Perspective/Reset perspective. This is very good if closing a window by mistake.

Adjusting formatting settings is done in Project properties/C/C++
General/Formatter/Configure Workspace Settings. Note that you need to create a new
profile to be able to adjust the settings as the built-in profiles cannot be modified. After
correct tab settings has been adjusted, the command “source/correct indentation” can be
used (ctrl+i).

9.7. Common problems and solutions

10.

When working with a project, make sure that the project files are writeable; otherwise
changes in project settings might not work and will not be saved even if making files
writable at a later stage.

Run/Debug does only work if there is already a debug configuration available. A debug
configuration can be set up with “Run/Debug configurations...”.

To decrease build time, make sure that “Enable parallel build” is enabled in C/C++
build/Behaviour.

If application does not start as expected, check that the bootloader has not been
overwritten or that FRAM settings for the bootloader has been corrupted.

If debugging does not work properly, try disconnecting the debugger from USB and also
the CrossFire IX from power. Connect back again. Also make sure that the correct binary is
selected under “Debug configurations”.

In some cases a “clean all, rebuild all” sequence is needed.

If files within a folder does not build, check the “Exclude resource from build” setting in
Properties C/C++ build.

Note that many settings are separate for .c and .cpp files and also for different
configurations (debug/release).

If installing a new version of Atollic TrueSTUDIO, make sure to create a new workspace for
that version. Incompability problems are common if using the same workspace folder for
several versions of TrueSTUDIO.

Getting started with IAR Embedded Workbench

IAR Embedded Workbench is a commercial IDE from IAR systems. A licence for the IAR IDE must
be bought separately from IAR.

10.1.

Opening and building a project

Open IAR Embedded Workbench 7.40 or later

Select File/Open Workspace

The workspace for CrossFirelIX is located into the Project/IAR folder

21

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

After opening the workspace it will look like the following:

& Project - IAR Embedded Workbench IDE
File Edit View Project Tools Window Help
W= 1) [0 o] AR ED @@ T S[LD

Workspace

* || main.cpp & | system_stm32f37x.c | CANopenCoreSettings.c | CANopenEncoderPulssGenerator.c | CANopenExternals

Felease_Caopen - 7

Eilas s B T‘ The main file 1s responsible for setting up and starting the system
B (3 Project - Release_CANopen v /

[Application

|8 [CANGpen extern void InititializeTsApplicaticnSw(void);

CICMSIS extern void PerformControl (void);

[JDoc

[Drivers i

CIEWARM T Main

[StdPeriph_Drivers *

| cifines b

— [platiorm_feature h #ifdef UNITIEST

D Oulput T‘ extern void PerformUnitTest (void):

#endif /4 #1fdef UNITTEST

int main(int argec, woid ** argv)
{

InititializelxApplicationSw{);
#ifdef UNITTEST
PerformUnitTest();

#endif // #ifdef UNITTEST

PerformControl () ;

To build the project select Project/Make.

If you have a debug probe connected you can select Project/Download and debug. The executable

will then be downloaded to the unit and started. You might need to change the debugger properties
in Project/Options/Debugger.

In case you want to rebuild everything select Project/Rebuild all.
To change project options go to Project/Options.

For the CANopen example there are two project configurations: Release_ CANopen and
Debug_CANopen. The release config is used for release builds. The debug configuration can be
used while debugging to get additional debug information. The project configuration to use is
selected in the drop-down box above the project files list.

10.2. Function profiling

It is highly recommended to use the IAR “Function profiler” to check which code that takes most
processor resources. Profiling can be done over SWD using “sampled trace”. This can be done using
a normal I-Jet debugger; a real trace debugger is not needed for sample mode.

Activate SWD

22

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

Cptions for node "Project”]

Category: Factary Setings

General Options

Static Analysis

Runtime Chedking
C/C++ Compller Connection | Breakpoints
assenbler Commnication

Output Converter @USB: DeviesD -
Custom Buid)
Buid Actions @ TCPAP: 1P address
Linker
Debuager
Simulator Interface ITAG scan chain
Angel
CMSIS DAP
f:: :;:i;mm, BWD Scan chain contains non-ARM devices
Liet/TTAGiet 0

T Stellaris [7] Log communication

Macraigar

PE micro

ROI

STAINK

Third-Party Driver

353 bbb ccc.ddd

S ITAG JTAG scan chain with multiple targets

$PROJ_DIRS\cspycommlog

Select J-Link/Function Profiler from the menu

Press the On button in the Function Profiling window. This must be done in break mode (Select
Debug/Break) if system is running

* Bils) ‘ k1
Function PC Zamp.. PCSamples ..
UpdateObj 46BRL 31.43
UpdateOhbj_v_0x6401_ReadAnaloguelnput_1... 12381 8.3
UpdateObjAll 9116 614
CdrvinterruptHandler 8767 5.90
Currenttdeasurement_CalculateSecondévera. 7112 4.79
irvCheckErrorRegister
UpdateCOhj_%_0x2016_CurrentFeedback 5264 3 .55
UpdateObj__0x6000_Readinput__kit 4279 2.88
UpdateOhj__0x201B_CutputStatusBits 3784 2 .55
CurrentMeasurement_CalculateFirstAverage 3403 2.29
GetarrayCountCodeGenerated 2750 1.85
BSP_SetPvwhDutyCycle 2743 1.85
Outputhanager_Execute 2642 1.78
5 UpdataOhj_V_0x2014_Internalvoltages 2390 161
2 Util_GetBoardvoltage 2368 1.59

Select “sampling mode” by right clicking in the Function Profiling Window and select (source:
sampled).

Start the system again by selecting Debug/Go (F5)

You can now sort the list by clicking the PC Samples column

10.3. Stack

As the CrossFire IX stack size is limited, make sure to check that the stack is not overwritten. There
is a good function in the IAR compiler to generate a stack analysis log.

23

CrossFire IX - Freely Programmable — Programming Manual

Options for node "Project”

|

Categany:

General Options

Static Analysis

Runtime Checking
CfC++ Compiler

Factory Settings

Cortig | Library | Input | Optimizations | Advanced | Output [List |+ [*

Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator

Angel

CMSIS DAP

GDB Server

IAR ROM-monitor
I4jet/ITAG)et
Iink/1-Trace

T1 Stellaris
Madcraigor

PE micro

RDI

Allow C++ exceptions
[C] Atways include
D

ST-LINK

Third-Party Driver
TIXDS

The stack and heap size can be changed in the Linker configuration file editor if needed

Cptions for node "Project™

B4

Catagary

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Euild Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDB Server
TAR ROM-monitor
I-jet/TTAGIet
Idink/1-Trace
TI Stellaris
Madraigor
PE micro
RDI

Third-Party Driver
TIXDS

Factory Settings
Config | Library [Input | 0y Advanced [Output [List [+ [*
Linker corfiguration fils
Overide default
$PROJ_DIRS'stm32F 37 _flash icf []
Confinustion file sumbal defi inne neclinel
Linker configuration file editor =
Vector Table | Memary Regions | Stack/Heap Sizes
CSTACK 0x2000
HEAP 0x400
ST-LINK. — E

11. Programming the CrossFire IX

11.1. General CrossFire IX programming recommendations

Revision: 1.32
2022-03-15

Do not use dynamic memory management (malloc, new etc). This is to avoid memory problems in

runtime.

Do not put large objects on the stack; the stack size is limited due to limited RAM.

Do not write functions that takes a long time to execute (> 1ms) and call from the OEM_ Execute().

Doing so will starve out other important things done in the main loop. Code that takes a long time
to execute should be divided into smaller parts.

11.2. Project structure

The standard CrossFire IX Atollic TrueSTUDIO project structure looks like the following:

24

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

[Project Explorer 2 E&|e =0

a % CrossFirel{ThingSpeak -
> 44 Binaries
> [l Includes
4 G-ﬁp Datal oggerAPI

> @flash.c

> [y flash.h

» [e

o [By tch

> [wifi.c

gy wifih

a [Drivers

4 (77 Target
+ @ CMSIS
> [Bpy STM32F3Tx_StdPeriph_Driver
>y @ bsp.c
- [bsp.h
- [can.c
» [l can.h
> g Bec
>y @ Lch

» @ sdadc.c
> [sdadch
> &
- [k spih

>y @ spidefs.h

> @ stm32f37x_conf.h
- € stm32f37x_it.c

s @ stm32f37_ith

- [syscalls.c
3 @ usart.c
> [l usarth
> 8 wdtc
> [y wdth
» [y defines.h
4 [Main
» [defaultsettings.c
> [main.c
» [systeminit.c
» [systemloop.c
4 (f OEM
> @ I¥_version.h
» [y OEMExtension.h
» [thingspeak.c
4 [Utilities
> @ assert.h
» [constants.h
» [§ ManageSw\er.c
» [ManageSwVer.h
» [} unittest.c
> = Debug
a4 [CoreAPI
gy currentcontrolh
gy Diagnostics.h
[5, FRAM
@ inputmanager.h

m

lgy eutputrnanagerh

[l utility.h
g platform_feature.h
2] stm32_flash.ld -

e Binaries and Includes is folders generated by Atollic TrueSTUDIO.

e DataLoggerAPI contains source and header files for the data logger functions. Only
applicable for the Data Logger Edition.

e Drivers contain all CrossControl drivers, ST Std Peripheral Drivers, interrupt handlers and
CMSIS (Cortex Microcontroller Software Interface Standard) drivers.

e Main contains main, systeminit, systemloop and default settings.
e OEM Contains the files the OEM is responsible for.
e Utilities contain various utility files.

e The Debug folder is generated by Atollic TrueSTUDIO.

25

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

e CoreAPI contains header files for the Core API. Core API is delivered as a library so no
source files are available.

e platform_feature.h contains defines for which features are available on which PCB version.

e stm32_flash.ld is the linker file defining how the linker will use the FLASH and RAM
memories.

11.3. CrossFire IX Core API

CrossFire IX Core API is the API that is used by the OEM when building an application on the
CrossFire IX. The Core API is hardware independent and built itself upon the drivers layer. The
OEM should not call functions directly in the drivers layer (except for the CAN driver and WDT)
but only through the Core API. Code for the drivers layer is supplied for reference.

The CrossFire IX Core API contains the following modules:

Module Header File
Input control inputmanager.h
Output control outputmanager.h
CurrentControl for outputs (PWMi) currentcontrol.h
Diagnostics Diagnostics.h
FRAM (Persistent Storage) FRAM.h

Utility functions (LEDs, Boot, Ignition, board utility.h

temp)

Most parts of the CrossFire IX firmware are delivered in source code form. However, the CrossFire
IX Core API is delivered in library form. There are two versions of the libraries, one release and one
debug version. The debug version ends with a D.

There is a complete description of the CrossFire IX Core API available in Doxygen format.

11.4. Pre-processor defines

There are a number of pre-processor defines used in the code. The following table describes their
use.

The following defines should NOT be changed by the OEM.

Define Description

USE_STDPERIPH_DRIVER Enable ST Std peripheral drivers

STM32F37X Define processor family

TARGET Compile for target hardware

STM32F10X_MD Define processor type as a medium
density processor

HSE_VALUE=16000000 Define crystal frequency

26

CrossFire IX - Freely Programmable — Programming Manual

Revision: 1.32
2022-03-15

STM32F373xC

Define processor family

The following defines can be changed by the OEM.

CCIX/LOGGER_EDITION

Should be set according to board type.
CCIX for the CANopen version of the
board and LOGGER__EDITION for the
logger edition of the board.

DEBUG /NDEBUG

Compile for DEBUG or RELEASE
(NDEBUG = Not Debug)

CANopen_BUILD

Build with SYS TEC CANopen support

USE_OUTPUT Activate support for outputs
USE_INPUT Activate support for inputs
USE_DIAG Activate support for diagnostics

USE_IGNITION

Activate support for ignition signal

FRAM_RANGE_CHECK

Test that the FRAM is used within
range. Normally only active for debug.

USE_PWMI Activate support for output 4-8 (PWMi
outputs)

CANRXBUFFERSIZE Set up the size of the CAN rx buffer used
in can.c

CANTXBUFFERSIZE Set up the size of the CAN tx buffer used

in can.c

There are also some defines used for debugging by CrossControl as well as a number of defines
used by the SYS TEC CANopen stack. Please read the SYS TEC documentation for details about the

SYS TEC defines.

11.5. System Init

System initialization is made in the systeminit.c file. The main function for initialization is the
InititializeIxApplicationSw() function. This function calls a number of different helper functions to
initialize different parts of the hardware. In the end of the init phase the function OEM_ Init() is

called. Here, the OEM can add its own initialization code.

Before the OEM_ Init is called, the function PerformControlInit() is called. This function enables
the watchdog and activates inputs and outputs. The idea is that the outputs and inputs should not

be active before the watchdog is activated.

11.6. Main Loop

CrossFire IX does not use an operating system; instead the execution is driven by a main loop and

interrupts.

The main loop is called PerformControl() and is located in the systemloop.c. PerformControl will
never exit but will run until the unit is reset or shut down. PerformControl is intended to run cyclic

27

L

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

tasks with low priority. Note that PerformControl can be interrupted by an interrupt at any time as
long as interrupts are not disabled.

A very simple scheduler is used to drive tasks that do need to run at a regular time interval. The
scheduler is run in the function TickScheduleTimerMS(). TickScheduleTimerMS is called every ms
from the SYSTICK interrupt setting flags that tell the PerformControl loop that it is time to execute
a certain function.

Every loop turn the function OEM_ Execute() will be called. Here the OEM can add code that
should be executed cyclically. It is not recommended to change directly in the function
PerformControl.

Every millisecond also the function OEM_MSTick() is called. This makes it possible for the OEM to
keep track of the elapsed time to be able to perform cyclic tasks.

11.7. Interrupts

Interrupts are handled in the stm32f37x_it.c file located in the drivers folder. It is possible for OEM
to change the interrupt handlers but this must be done with great care.

CurrentControl for PWMi and input filtering is driven by interrupts. These interrupts take
relatively long time to execute. It might be necessary to create interrupts with higher priority than
these if quick response time is needed. However, such interrupts must be very fast to not disturb
the PWMIi regulation and the input filtering.

Do not access shared resources from interrupts as this might cause re-entrance problems!

STM32F373 uses 4 bits for interrupt priority and sub-priority. It is possible to decide how many
bits will be used for priority and how many bits will be used for sub-priority according to the table
below. CrossFire IX uses group 2 which means that 4 levels of interrupt priority and 4 levels of sub-
priority is available.

The table below gives the allowed values of the pre-emption priority and subpriority according
to the Priority Grouping configuration performed by NVIC_PriorityGroupConfig function

NVIC_PriorityGroup | NvIC_ [ESSIEINSSIPREREICERIREY | NVIC_IRQChannelSubPriority | Description

NVIC_PriorityGroup_@ | 0 | 0-15 | 0 bits for pre-emption priority
| | | 4 bits for subpriority

NVIC_PriorityGroup_1 | 0-1 | 0-7 | 1 bits for pre-emption priority
[| | 3 bits for subpriority

NVIC_PriorityGroup_2 | 0-3 | 0-3 | 2 bits for pre-emption priority
[| | 2 bits for subpriority

NVIC_PriorityGroup_3 | 0-7 | 0-1 | 3 bits for pre-emption priority
[| | 1 bits for subpriority

NVIC_PriorityGroup_4 | 0-15 | 0 | 4 bits for pre-emption priority
| | | @ bits for subpriority

Interrupt Description Priority
(priority/sub
priority). Lower
number means
higher priority.

DMA from ADC Used for current measurement for current control 1/0
(PWMi).

28

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

SPI2 A3942 Gate Driver 1/0

SPI3 Shift registers for port config 1/0

PVD Programmable Voltage Detector interrupts to detect 0/0
low supply voltage

EXTI4 External Interrupt to handle ignition o/o

CAN1RX/TX/SCE | Interrupts for CAN communication 0/0

SDADC Interrupts for handling the sigma delta ADC 3/0
converter (SDADC) used for analog inputs

Timer 5 Interrupt to drive input sampling/filtering 3/0

SYSTICK Interrupt is used for timing purposes

11.8. Using the Watchdog

To make sure that the unit does not lock up in a dangerous state in case of a software error, the
hardware watchdog is used. If doing a lengthy operation, calling reload on the watchdog might be
necessary. However, in most cases it is better to rewrite the code to avoid the lengthy operations.
Lengthy operations do not only trigger the watchdog, but they also reduce the responsiveness of the
device.

Name Description

void WDT_Reload(void); Reload the Watchdog.

11.9. Performance considerations

In case inputs or outputs are not used at all, it is possible to optimize performance by removing the
pre-processor defines USE_INPUT and/or USE_OUTPUT. By removing these defines, code that
handles inputs and/or outputs are not executed resulting in a faster execution. If outputs are used
but not the PWMi outputs (4-8) the define USE_ PWMI can be removed.

For solving performance problems, using function profiling using SWD is highly recommended.

11.10. Version number

It is highly recommended to keep an updated version number. The version number is manually
entered into IX_version.h. The version entered here will automatically be placed at a fixed location
in the FLASH memory, which makes it possible also for the bootloader to read the version.

For the CANopen slave version the version number is also mapped into the Object Dictionary so it
is possible to read the version number over CAN.

29

v

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

11.11. Diagnostics

The CrossFire IX Core API contains a diagnostics module. This module is responsible for writing
diagnostics data to FRAM. The diagnostics data can help CrossControl in case of a problem. To
make diagnostics work, the function DIAG_ Cyclic() must be called cyclically from the main loop.
The function DIAG_ SetTick() must be called every ms. The function DIAG_ Init() must be called at
start up. The calls to these functions are already added to systeminit/systemloop so the OEM does
not need to do anything. It is possible to disable to use of diagnostics by removing the pre-
processor define USE_DIAG. However, it is highly recommended to keep the diagnostics
functionality.

12. Examples

Note that all examples need additional testing and error management to be used as products.

12.1. The Basic I/O example

The Basic I/0 example shows how to configure input and output I/O. Measure values are sent as
user defined CAN messages. By setting the #define TEST_ENCODER inputs 13, 14 are used in
combined encoder mode instead of in frequency mode. This is the most basic example available and
a good starting point for writing CrossFire IX applications.

This example sets up I/O according to the following table:

Output I/0

0 Digital

1 Digital

2 PWM 50Hz

3 PWM 400Hz

4 PWMi

5 PWMi

6 PWM

7 Digital

Input I/0

o 0-32V

1 0-32V

2 0-32V

3 0-32V

4 Current (4-20mA)
5 Current (4-20mA)
6 Current (4-20mA)

30

-l

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
7 Current (4-20mA)

8 Digital/Pull Up

9 Digital/Pull up

10 Digital/Pull down

11 Digital/Pull down

12 Freq/Pull Up

13 Freq/Pull Up

NOTE! As inputs 8-11 is always digital there is no need to explicitly set the mode.
The example also sets up input filtering to the following:

Sampling frequency 50Hz.

0 Average of 10 measurements
1 Average of 50 measurements
2 25% forgetting filter

12.2. The CANopen slave example
NOTE! This example is only available for customers that have signed an NDA.

The CANopen slave example is actually a complete CANopen slave, basically the same code as is
included in the CANopen slave version of the CrossFire IX. This means that the example is quite
complex, however it shows all functionality that is needed to build a CANopen slave and is also
possible to extend to get a customer version of a complete CANopen slave.

The CANopen slave example is based on the SYS TEC CANopen stack. The SYS TEC CANopen stack
normally uses a file called target.c to set up the processor (gpio, sysclk etc). As the CrossFire IX can
run completely without the SYS TEC CANopen stack, CrossFire IX does not use this file to set up
the processor. Processor setup is done in CrossControl driver and bsp files. However, there are
some functions for memory management and CAN interrupts that are used from target.c. The
CrossFire IX specific version used is called target_ix.c.

The main file for init and execution of CANopen functions is the CANopenMAIN.c file. This file is
derived from the slave example from SYS TEC. This file contains the function

CANopenMAIN_ Init() that initializes the stack and the function CANopenMAIN_ Execute() that is
called from the main loop to execute the stack. It also contains the function AppCbNmtEvent() that
is called by the stack in case of an NMT (NodeManagementT) event.

For persistent storage of CANopen parameters the file tgtcav.c is used. This file is delivered as a
generic template from SYS TEC and has been adapted to the CrossFire IX by CrossControl

The CAN driver cdrvbxcan.c from SYS TEC is used as CAN driver. The driver is slightly modified by
CrossControl to work for the CrossFire IX.

The connection between the CANopen stack and the CrossFire IX Core API is done in the file
CANopenlIntegration.c. Even if the SYS TEC CANopen stack is not used, CANopenIntegration.c can
be seen as an example of how the Core API is used.

31

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

The CANopen slave example uses a specific define “CANopen_BUILD”. This define will activate
some additional code mainly in systeminit.c and systemloop.c.

Details about the CANopen-OD/ObjectDictionary-build-process can be read in the CrossFire IX
CANopen - SADD.docx.

13. Testing

There are a number of test functions included in the freely programmable SDK. By setting the
define UNITTEST the function PerformUnitTest will be executed after system init. In this function
a number of test functions are called. The test functions will use printf to give user feedback so it is
important that printf calls are redirected to a console window to see the output. It is possible to
comment out the test functions that you do not want to run.

The available test functions are:

Name Description

I2C_FRAM_ SpeedTest Test read/write performance of the I2c FRAM

CAN_SendTest Test to send 100000 CAN messages at 1000 kbit/s as fast as
possible.

CAN_ ReceiveTest Test to receive 10000 CAN messages at 1000 kbit/s.

It is highly recommended to run these test functions before a release and the OEM is encouraged to
add their own test functions that can be run in the same way.

It is recommended to use static code analysis. Cppcheck is a free tool
(http://cppcheck.sourceforge.net/) that has been used on the CrossFire IX by CrossControl.
Cppcheck can be run stand alone or as a plugin in Atollic TrueSTUDIO/Eclipse.

14. Using the CrossFire IX Hardware

14.1. Hardware resources

The following hardware resources are used in CrossFire IX.

The OEM should normally not use these HW resources directly, although it is possible to use for
instance the PWM generation timers for other purposes if PWM outputs are not used.

Resource Usage

Timer 17 PWM generation for outputs
Timer 19
Timer 16
Timer 12
Timer 15
Timer 13

Timer 4

32

http://cppcheck.sourceforge.net/

CrossFire IX - Freely Programmable — Programming Manual

Revision: 1.32
2022-03-15

Timer 14

Timer 5 Input filtering

SDADC1 Analogue inputs

SDADC2

ADC1 Analogue measurements (excluding inputs)
DMA1 CH1 ADC measurements used for PWMi

PVD Low supply voltage detection

SPI2 SPI to gate driver A3942 driving the PWMi capable outputs
SPI3 Shift registers for input configuration

I2C1 Temp sensor/FRAM

CAN1 CAN

EXTI4 Ignition

SYSTICK General timing

DMA1CH5 Frequency /Encoder Inputs

DMA1CH7

Timer 2

DMA1CH2 SPI-FLASH RX

DMA1CHS3 SPI-FLASH TX

Timer 3 is reserved for future use in the Core API.

Timer 6, 7 and 18 is free to use for the OEM.

14.2. Using the CrossFire IX 1/O

The 1/0 of the CrossFire IX is available through the Core API. Generally, the I/O configuration
should be set up in OEM__Init(). However, it is also possible to change the configuration “on the fly”
if needed. I/O is generally controlled from the OEM_ Execute() function. Make sure to call the
function OutputManager_ApplySettings(void); after changing output mode or pwm frequency.

Most I/0 functions use very little CPU power. For instance PWM is completely generated in

hardware. The most processor intensive I/0 task is PWMi control. PWMi control is done in

software so do not activate PWMi if not needed. Also inputs will require some CPU power if using
input filtering. It is highly recommended to use function profiling to see how much CPU power is
used for different functions.

This is a list of the most common functions for controlling the I/O. A complete list of functions is
available in the Doxygen documentation for Core API.

33

CrossFire IX - Freely Programmable — Programming Manual

Revision: 1.32
2022-03-15

Outputs

BOOL OutputManager_SetMode(outputchannel channel, controlModes
mode) ;

Set the mode for an output
channel

void OutputManager_SetPWMDutyCycle(outputchannel channel, unsigned
short dutyCycle);

Set the PWM duty cycle for an
output in PWM mode

void OutputManager_SetPWMFrequency(outputchannel channel, unsigned
short frequency);

Set the PWM frequency in Hz
for an output in PWM mode

void OutputManager_SetOn(outputchannel channel, BOOL value);

Set on/off for an output in
digital mode

void OutputManager_ApplySettings(void);

Apply setting changes. This
function must be called when
changing port mode or PWM
frequency

portStatus OutputManager_GetPortStatus(outputchannel channel);

Get port status for an output
channel

void OutputManager_Retry(outputchannel channel);

Try to restart a channel that
has been shut off due to port
error

signed short OutputManager_GetAverageOutputCurrent(outputchannel
channel);

Get the output current for an
output channel averaged
during a longer period. Only
valid for PWMIi capable
channels.

unsigned short
OutputManager_GetHS14CurrentWithErrorDetection(outputchannel
channel);

Get current feedback for high
side output 1-4

void OutputManager_SetMeasurementPeriod(outputchannel channel,
unsigned short currentPeriod, unsigned short totalPeriods);

Set the length of the
measurement periods used for
OutputManager_GetAverageO
utputCurrent.

PWMi

void CurrentControl_SetCurrentReference(outputchannel channel,
unsigned short current);

Set the current reference for
an output channel

void CurrentControl_SetDitherAmplitude(outputchannel channel,
unsigned short amplitude);

Set the dither amplitude for an
output channel

void CurrentControl_SetDitherFrequency(outputchannel channel,
unsigned short frequency);

Set the dither frequency for an
output channel

Inputs

BOOL InputManager_SetAnalogMode(AnalogInputChannel channel,
AnalogInputMode mode);

Set analog mode for an analog
input

BOOL InputManager_GetDigitalInput(inputchannel channel);

Get value of input in digital

34

CrossFire IX - Freely Programmable — Programming Manual

Revision: 1.32
2022-03-15

mode

float InputManager_GetAnalogInput(AnalogInputChannel channel);

Get value of input in analog
mode

BOOL InputManager_SetDigitalInBiasMode(DigitalInputChannel
channel, DigitalInputBiasMode mode);

Set bias mode for a digital
input channel

void InputManager_SetAnalogInFilterParameters(AnalogInputChannel
channel, unsigned char filterLengh, unsigned char
weightForgettingFilter);

Set Analog in filter parameters

void InputManager_SetInputSamplingFrequency(unsigned short
frequencyHz);

Set sampling frequency for
analog inputs

unsigned char InputManager_GetOverCurrentProtectionStatus(void);

Get status of which inputs is in
over current protection mode

Frequency/Encoder

BOOL InputManager_SetFrequencyInMode(FrequencyInputChannel
channel, FrequencyInMode mode);

Set Frequency Input mode
(digital, encoder, freq).
NOTE!!! You must also call
InputManager_SetFrequencyl
nBiasMode after this call to
make settings take effect!!!

BOOL InputManager_SetFrequencyInBiasMode(FrequencyInputChannel
channel, FrequencyInBiasMode mode);

Set Frequency Input bias
mode

unsigned long InputManager_GetEncoderInput(FrequencyInputChannel
channel);

Get encoder value for inputs
in encoder mode. For encoder
mode two inputs must be
combined. Both channels will
return the same encoder
value.

float
InputManager_GetFrequencyInputFrequency(FrequencyInputChannel
channel);

Get frequency for frequency
input in frequency mode

void InputManager_ResetEncoderValue(void);

Reset the encoder value

void InputManager_SetMinFreq(FrequencyInputChannel input, float
freq);

Configure the min frequency
for a frequency input. Using a
low min frequency means that
it takes a longer time to detect
a 0 Hz signal.

14.3. Using the FRAM memory

The CrossFire IX PCB contains an 8KB FRAM memory that can be used to store persistent data. It
is very important to not use parts of the FRAM memory that is used for other purposes. Please note
that the FRAM memory is relatively slow so avoid writing a lot of data to the FRAM continuously.
Only write to the FRAM from the main loop (not from interrupts) to avoid re-entrance problems.

35

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
FRAM Range Purpose
0x0-0x5FF Reserved for use by CrossControl. In this area calibration values,

production data, diagnostic data and other important data is
written. Writing to this area might cause the unit to malfunction!

0x600-0x1FFF Available for the OEM. However, parts of this area is used for
persistent storage of CANopen OD if the CANopen slave stack is
used.

There is a test function for the I2C FRAM (I2C_FRAM_ WriteTest) included in the I2c driver giving
the following data:

Performing 12C FRAM test

|2C FRAM Write speed: 31 KB/s
|2C FRAM Read speed: 28 KB/s
|2C FRAM test done

This is a list of the most common functions for FRAM. A complete list of functions is available in
the Doxygen documentation for Core APIL.

unsigned char FRAM_Write(unsigned short address, Write a byte to FRAM

unsigned char data);

unsigned char FRAM_WriteBytes(unsigned short address, Write a number ofbytes to FRAM
unsigned char *data, unsigned long len);

unsigned char FRAM_WriteBytesUserArea(unsigned short Write a number ofbytes to FRAM user
address, unsigned char *data, unsigned long len); area

unsigned char FRAM_ReadBytes(unsigned short address, Read a number of bytes from FRAM

unsigned char *data, unsigned long len);

14.4. CAN driver

There are two CAN drivers available for CrossFire IX. There is one CAN driver defined in can.c
available in the drivers folder. This is a generic CAN driver recommended in most cases. There is
also the SYS TEC cdrvbxcan.c that fully integrates with the SYS TEC CANopen stack. Some code for
system setup is used from can.c even if the edrvbxcan.c is used.

This is a list of the most common functions for CAN. A complete list of functions is available in the
Doxygen documentation for the drivers.

void CAN_Config(CANBaudRates baudRate, CANmodes mode); Initialize CAN. Note that filter mask = o
is set to accept all messages including
rtr and extended frames.

BOOL CAN_Recv(CanRxMsg *msg); Get CAN message from receive buffer
unsigned char CAN_Send(CanTxMsg *msg); Send a CAN message

BOOL CAN_SetMessageFilter(unsigned char filterNum, Activate a CAN message filter
unsigned long filterId, unsigned long maskId, BOOL rtr,

BOOL ide);

36

CrossFire IX - Freely Programmable — Programming Manual

14.5. ADC

Revision: 1.32
2022-03-15

The ADC is used in scan mode with DMA. This means that the ADC is automatically switching
between a list of ADC channels writing the result to an array. It is very important that the OEM
does not use the ADC itself (disturbing the ADC scanning) but instead read values through the Core
API. The scanning is set up in void BSP_ADC_ Config(void). The values are written to
g_ADCi1_data. The OEM should only get data through the Core API.

14.6. Ignition

CrossFire IX supports control by an ignition signal. The supervision of the signal is done
completely in software. By calling the function Util_CheckIgnition() from the main loop, the
ignition signal will be checked and the processor will be set into sleep mode in case the signal is
low. If the ignition signal goes high again, the processor will resume, and the software will make a
reset to make the CrossFire IX start from scratch. The reason to check for the ignition signal from
the main loop instead of from an interrupt is to get better control over when suspend mode is
entered. For instance, we want to have the chance to write data to FRAM before suspend is entered.

It is possible to disable to use of ignition by removing the pre-processor define USE_IGNITION.

14.7. Utility Functions

There are also a number of utility functions available. These are the most common:

void Util_SetGreenLED(BOOL enable);

Set the green LED.

void Util_SetRedLED(BOOL enable);

Set the red LED.

void Util_JumpToBoot(void);

Jump to bootloader to make it possible to do a firmware
upgrade.

void

Util_WriteApplicationOKtoFRAM(void);

Write application OK to FRAM. This function should be
called when application is up and running to let the
bootloader know the application is working properly.

unsigned short
Util_GetBoardVoltage(boardVoltage
voltage);

Get board voltage.

void Util_SetSensorSupply(BOOL
enable);

Activate/deactivate the sensor supply.

BOOL Util_GetBoardTempDegC(signed
short *value);

Get the board temperature.

void Util_SleepMS(unsigned long
timeoutMS);

Sleep a number of ms. This function uses the systick 1 ms
interrupt to get an exact delay.

void Util_SleepUS(unsigned long
timeoutUS);

Sleep a number of us. This function uses a simple for loop to
get a delay without the need for the systick or other
interrupt.

BOOL Util IsTimeout(unsigned long
startTimeMS, unsigned long
timeoutMS);

Check for timeout

unsigned long Util GetTimeMS();

Get the current ms counter. This value will wrap around but
that is no problem if using relative values.

37

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

15. Tools

There are three tools included in the CrossFire IX freely programmable SDK:
¢ CrossFire IX Tool
e CrossFireIX Tool CANopen
e SakNfo Tool

The CrossFire IX Tool is used for firmware upgrade and for building firmware packages that can be
sent over Wi-Fi (FOTA). The CrossFire IX Tool is located in the folder Tools\CrossFire IX Tool
\bin_DN4\Release.

The CrossFire IX Tool CANopen is used for firmware upgrade and test for the CrossFire IX
CANopen slave version. CrossFire IX Tool CANopen is located in the folder Tools\CrossFire IX
Tool CANopen\CrossFire IX Tool\bin_DN4\Debug.

There is also the SakNfo (Sak=SwissArmyKnife for handling Info=Nfo) tool that is used to generate
a CANopen configuration (basically an OD). The configuration is changed by modifying some
source files and rebuilding the tool. The SakNfo tool is built using MS Visual Studio 2010 or later.
More information about using this tool is found in the CrossFire IX CANopen - SADD.docx.

15.1. Installing CrossFire IX Tools

The following equipment is needed to run the CrossFire IX Tool:
e PC running Windows 7/8/10 32 or 64-bit
e IXXAT USB-to-CAN adapter

e CAN cabling for CrossFire IX with proper termination (120 ohm resistor at each end of the
cable).

To run the tools:

e Install the IXXAT VCIy4 drivers. The drivers can be downloaded from
https://www.ixxat.com/support

e Install .NET4 runtime. The runtime can be downloaded from
https://dotnet.microsoft.com/download/dotnet-framework-runtime

e There is no installation needed for CrossFire IX Tools. Just run the .exe file.

38

https://www.ixxat.com/support
https://dotnet.microsoft.com/download/dotnet-framework-runtime

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

15.2. Using the CrossFire IX Tool for CANopen
. , - Sl _
CanDiver: (VG4 =] BaudRate CAN it OK

Node Id: 1 Net: [1 [7] TestCan mode
[F] Use bootup auto

cANOPEN

© Crossfire IX Tool

Application versian:
Bootloader version

Press F5to refresh versions

SW Upgrade | inputs | Outputs | Calibration [Info | Node Id and Baudrate

To update CrossFire [X:
Browse for binary files with . button and press the update button

Application

Update firmware application I

i Bootloader

Update fimware bootloader |

Progress:

The CrossFire IX tool for CANopen is intended to run against the CANopen slave example. As the
tool uses CANopen messages to perform software upgrade, it is not working against the “Data
Logger Edition” examples.

To update the CANopen slave main application, browse for the application binary by pressing the
“...” button and press “Update firmware application”.

To update the CANopen slave boot loader, browse for the boot loader binary by pressing the “...”
button and press “Update firmware bootloader”.

15.3. Using the CrossFire IX Tool (not CANopen version)

The IX Status and Info tabs do only work if unit is built with support for the “testcan” protocol
normally used in production test. The FOTA tab is used to build a firmware package that can be
downloaded over Wi-Fi. Wi-Fi update is only possible if FOTA support is added to the CrossFire
IX/ESP8266 firmware.

39

-

Revision: 1.32

CrossFire IX - Freely Programmable — Programming Manual 2022-03-15
ull CrossFire IX Tool = B %
Can Driver: VCI4 -
Node Id: |1 Net: |1
IX Status | SW Upgrade |FOTA [Info |
To update CrossFire [X:
Browse for binary files with ... button and press the update button
Application
Update fimware application
Bootloader
Update fimware bootloader
WiFi Update
Firmware:
Baudrate (Fimware image)
230400 - Update WiFi firmware
LUA scripts
Baudrate (LUA)
115200 - Update LUA scripts
WiFi Update ALL Cancel / Done
Status: IDLE Bytes sent received
Progress:

15.3.1. Upgrading the firmware of the CrossFire IX over CAN

The tool will automatically connect to the CAN bus at 1000 kbit/s when started. If this does not
work, make sure the VCI4 drivers are installed properly, the USB-to-CAN adapter is connected and
the no other application is using the CAN interface. Make sure that the CrossFire IX is connected to
the USB-to-CAN adapter and that the CAN-cable is properly terminated (120 ohm resistor at both
ends). Also make sure the CrossFire IX is in boot loader mode. How to get to the bootloader mode
is dependent on the application running on the unit. The CrossFire IX Tool will send an id 0x555
CAN message to the unit to make it to go to boot loader mode. In some cases it is necessary to
activate a digital input at start up to make the unit listen for 0x555 messages. This is done in for
instance in the CAN to Wi-Fi gateway example to make sure the unit does not go to boot loader
mode in case a 0x555 messages is sent by coincidence. Read the documentation for the software
that is currently on the module.

To update the CrossFire IX main application, browse for the binary from the Application group box
and press “Update firmware application”.

To update the CrossFire IX boot loader, browse for the binary from the Bootloader group box and
press “Update firmware bootloader”. Make sure to not abort upgrade of the bootloader as this can
cause the unit to not be able to boot.

To update the ESP8266 Wi-Fi slave processor, browse for the binary from the Wi-Fi
Update/Firmware group box and press “Update WiFi firmware”. Baud rate should normally be
230400.

NOTE! The LUA update functions are not needed if you are not using the NodeMCU/LUA firmware
on the ESP8266 which is not recommended!

40

CrossFire IX - Freely Programmable — Programming Manual

16. References

CrossFire IX - Freely Programmable - Data Logger Edition - Programming Manual.docx
CrossFire IX - Technical manual.docx

CrossFire IX - CANopen Slave Developers Guide.docx

CrossFire IX CANopen - Firmware upgrade instructions.docx

CrossFire IX CANopen - SADD.docx

https://crosscontrol.com/support/

http://cppcheck.sourceforge.net/

https://www.ixxat.com/technical-support/support

https://atollic.com/

http://cppcheck.sourceforge.net/

https://www.systec-electronic.com/

https://www.iar.com/

Revision: 1.32
2022-03-15

41

http://cppcheck.sourceforge.net/
https://www.ixxat.com/technical-support/support
https://atollic.com/
http://cppcheck.sourceforge.net/
https://www.systec-electronic.com/
https://www.iar.com/

Revision: 1.32
CrossFire IX - Freely Programmable — Programming Manual 2022-03-15

17. Trademark, etc.

© 2018 CrossControl
All trademarks sighted in this document are the property of their respective owners.
CrossFire is a trademark which is the property of CrossControl AB.

Freescale is a registered trademark of Freescale Semiconductor Inc. ARM is a registered trademark
of ARM Limited. Linux is a registered trademark of Linus Torvalds. Bluetooth is a trademark of
Bluetooth SIG. CANopen is a registered trademark of CAN in Automation (CiA).

CrossControl is not responsible for editing errors, technical errors or for material which has been
omitted in this document. CrossControl is not responsible for unintentional damage or for damage
which occurs as a result of supplying, handling or using of this material including the devices and
software referred to herein. The information in this handbook is supplied without any guarantees
and can change without prior notification.

For CrossControl licensed software, CrossControl grants you a license, to under CrossControl
intellectual property rights, to use, reproduce, distribute, market and sell the software, only as a
part of or integrated within, the devices for which this documentation concerns. Any other usage,
such as, but not limited to, reproduction, distribution, marketing, sales and reverse engineer of this
documentation, licensed software source code or any other affiliated material may not be
performed without written consent of CrossControl.

CrossControl respects the intellectual property of others, and we ask our users to do the same.
Where software based on CrossControl software or products is distributed, the software may only
be distributed in accordance with the terms and conditions provided by the reproduced licensors.

For end-user license agreements (EULAs), copyright notices, conditions, and disclaimers,
regarding certain third-party components used in the device, refer to the copyright notices
documentation.

42

