

� Kontron Technical Manual

� Kontron JIDA32 Library API

Document Revision 1.9

Dieter

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 2 of 61

Table of Contents

TABLE OF CONTENTS 2

USER INFORMATION 6

Trademarks 6

General 6

Warranty 7

INTRODUCTION 8

REQUIREMENTS 8

INSTALLATION 8

Windows NT/2000/XP 9

Windows 98/ME 9

Windows 95 10

Windows CE 10

Linux 11

VxWorks 13

ADDITIONAL PROGRAMS 15

LCD Hot Key Support 15

Sample Programs 16

PROGRAMMING OVERVIEW 17

Initializing the DLL 17

Establishing a connection to a board 18

Generic board functions 19

VGA functions 19

Storage areas 19

I2C buses 20

Watchdog 20

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 3 of 61

CPU Performance 21

Input/Output Port 21

Board Sensor Functions 21

JIDA32 LIBRARY API PROGRAMMER'S REFERENCE 22

JidaDllGetVersion 22

JidaDllInitialize 22

JidaDllUninitialize 22

JidaDllIsAvailable 23

JidaDllInstall 23

JidaBoardCount 24

JidaBoardOpen 24

JidaBoardOpenByName 25

JidaBoardClose 25

JidaBoardGetName 26

JidaBoardGetInfo 26

JidaBoardGetBootCounter 27

JidaBoardGetRunningTimeMeter 28

JidaBoardGetOption 29

JidaBoardSetOption 29

JidaBoardGetBootErrorLog 30

JidaVgaGetContrast 32

JidaVgaSetContrast 32

JidaVgaGetContrastEnable 33

JidaVgaSetContrastEnable 33

JidaVgaGetBacklight 34

JidaVgaSetBacklight 34

JidaVgaGetBacklightEnable 35

JidaVgaSetBacklightEnable 35

JidaVgaEndDarkBoot 35

JidaStorageAreaCount 36

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 4 of 61

JidaStorageAreaType 36

JidaStorageAreaSize 37

JidaStorageAreaBlockSize 37

JidaStorageAreaRead 38

JidaStorageAreaWrite 38

JidaStorageAreaErase 39

JidaStorageAreaEraseStatus 39

JidaI2CCount 40

JidaI2CIsAvailable 40

JidaI2CType 40

JidaI2CRead 41

JidaI2CWrite 41

JidaI2CWriteReadCombined 42

JidaI2CReadRegister 42

JidaI2CWriteRegister 43

JidaIOCount 44

JidaIOIsAvailable 44

JidaIORead 44

JidaIOWrite 45

JidaIOXorAndXor 45

JidaIOGetDirection 46

JidaIOSetDirection 46

JidaIOGetDirectionCaps 47

JidaIOGetName 47

JidaWDogCount 48

JidaWDogIsAvailable 48

JidaWDogTrigger 48

JidaWDogDisable 49

JidaWDogSetConfig 49

JidaWDogSetConfigStruct 50

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 5 of 61

JidaWDogGetConfigStruct 50

JWDCONFIG Data Structure 51

JidaPerformanceGetCurrent 52

JidaPerformanceSetCurrent 52

JidaPerformanceGetPolicyCaps 53

JidaPerformanceGetPolicy 53

JidaPerformanceSetPolicy 54

JidaTemperatureCount 55

JidaTemperatureGetCurrent 55

JidaTemperatureGetInfo 56

JidaFanCount 57

JidaFanGetCurrent 57

JidaFanGetInfo 58

JidaVoltageCount 59

JidaVoltageGetCurrent 59

JidaVoltageGetInfo 60

DOCUMENT REVISION HISTORY 61

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 6 of 61

User Information

Copyright 2009 Kontron Embedded Modules GmbH.
In this document Kontron Embedded Modules GmbH will also be referred to by the short form
"Kontron ".

The information in this document has been carefully checked and is believed to be accurate and reliable.
However, no responsibility is assumed for inaccuracies. Furthermore, Kontron reserves the right to
make changes to any portion of this manual to improve reliability, function or design. Kontron does not
assume any liability for any product or circuit described herein.

Trademarks

AT and IBM are trademarks of International Business Machines
XT, AT, PS/2 and Personal System/2 are trademarks of International Business Machines Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.
All other products and trademarks mentioned in this manual are trademarks of their respective owners.

The reproduction, transmission or use of this document or its contents is not permitted without
expressed written authority.
Offenders will be liable for damages. All rights created by patent grant or registration of a utility model or
design, are reserved.
© Kontron Embedded Modules 2009

General

For the circuits, descriptions and tables indicated no responsibility is assumed as far as patents or other
rights of third parties are concerned.
The information in the Technical Descriptions describes the type of the boards and shall not be
considered as assured characteristics.
The reproduction, transmission or use of this document or its contents is not permitted without express
written authority. Offenders will be liable for damages. All rights, including rights created by patent grant
or registration of a utility model or design, are reserved.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 7 of 61

Warranty

Each board is tested carefully and thoroughly before being shipped. If, however, problems should occur
during the operation, please check your user specific settings of all boards included in your system. This
is often the source of the fault. If a board is defective, it can be sent to your supplier for repair. Please
take care of the following steps:

1. The board returned should have the factory default settings since a test is only possible

with these settings.

2. In order to repair your board as fast as possible we require some additional information

from you. Please fill out the attached Repair Form and include it with the defective board.

3. If possible the board will be upgraded to the latest version without additional cost.

4. Upon receipt of the board please be aware that your user specific settings were changed

during the test.

Within the warranty period the repair is free of charge as long as the warranty conditions are observed.
Because of the high test expenditure you will be charged with the test cost if no fault is found. Repair
after the warranty period will be charged.

This Kontron product is warranted against defects in material and workmanship for the warranty period
from the date of shipment. During the warranty period Kontron will at its option either repair or replace
defective products.

For warranty service or repair the product must be returned to a service facility designated by Kontron .

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance or
handling by buyer, unauthorized modification or misuse, operation outside of the product's environmental
specifications or improper installation or maintenance.

Kontron will not be responsible for any defects or damages to other products not supplied by Kontron

that are caused by a faulty Kontron product.

Kontron Embedded Modules GmbH
Brunnwiesenstraße 16
94469 Deggendorf
Germany

http://www.kontron.com
sales-kem@kontron.com

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 8 of 61

Introduction

Most Kontron PC boards are equipped with unique hardware features that cannot be accessed with
standard API. The JIDA interface allows you to access these features in a hardware independent manner
under popular 32-bit operating systems.

The library interface works under any flavor of Win32, as well as Linux and VxWorks. The library
communicates with a platform dependent driver. At the present time drivers are available for Windows 9x,
Windows NT, Windows 2000, Windows XP, Windows CE, Linux, and VxWorks.

The API was renamed from "JIDA Win32 API" to "JIDA32 Library API" as it is now available for a variety
of operating systems. There are no changes for using the API under Windows.

The Watchdog functionality has been integrated into the JIDA API. The use of the obsolete JWDOG.DLL
is strongly discouraged.

Requirements

• PC with any number of Kontron boards that have BIOS support
• Any of these operating system:

• Windows 9x
• Windows NT 4.0
• Windows 2000/XP/Vista
• Windows CE 2.x/3.0/4.x/5.0/6.0
• Linux 2.2/2.4/2.6
• Wind River Tornado 2.0/2.2 (VxWorks 5.4/5.6) with Pentium or 486 BSP
• QNX

Installation

The drivers are dynamically installed upon running the sample application JIDATST.EXE. You can do
that in your own application as well.

Under Windows NT/2000/XP you need Administrator rights to install the drivers, i.e. running
JIDATST.EXE for the first time.

The JIDA API includes a function JidaDllInstall that allows you to perform the necessary steps to
set up the required drivers in an operating system independent manner. Please note that it still your
responsibility to copy the required files into the Windows directory before calling JidaDllInstall.
The files are listed below for each operating system along with installation instructions if you do not want
to use the JIDA install function.

Please note that the JIDA.DLL is binary compatible between Windows 9x and NT/2000/XP. A different
version with the same name is supplied for Windows CE.

The Jida.h header file is the same on all operating system versions. For Linux and VxWorks you need
to include the file JWinDefs.h before including Jida.h. to pull in missing type declarations. You also
need to include any OS specific header file before that like windows.h or vxWorks.h.

Note that for individual operating systems or boards Kontron may occasionally release separate
packages of the JIDA32 Library files or drivers that will eventually be incorporated into this complete
package. So always check for individual updates first.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 9 of 61

Windows NT/2000/XP

The following files must be copied to the Windows NT System32 directory:

JIDA.DLL
DRIVERS\JIDAN.SYS

To set up the drivers manually the following entries must be made to the system registry:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JidaN]
"Type"=dword:00000001
"Start"=dword:00000002
"ErrorControl"=dword:00000001
"Group"="Extended Base"

Please note that the Restart option is not implemented under Windows NT/2000/XP. The Restart option
of the watch dog API issues an NMI when the watch dog expires. If desired you can add your own NMI
Handler. By default NT will produce a blue screen. This behavior is by design.

Windows 98/ME

The following files must be copied to the Windows System32 directory:

JIDA.DLL
DRIVERS\JIDAN.SYS
JWDOGV.VXD
JWDOGR.EXE

For Win 98/ME copy the JIDAN.SYS to the Windows\system32\drivers directory.
The driver ***MUST*** be in that directory.

If had an older version of the Jida Drivers installed then DO NOT load the JIDAV.VXD anymore.
The "device=jidav.vxd" line must be removed from system.ini.

To set up the drivers manually the following entries must be made to the system registry:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JidaN]
"Type"=dword:00000001
"Start"=dword:00000002
"ErrorControl"=dword:00000001
"Group"="Extended Base"

To set up the watchdog driver manually the following line must be added to [386Enh] section of the
SYSTEM.INI file located in the Windows directory:

device=JWDOGV.VXD

Note that if you do not intend to use the watchdog functionality then you do not need to load the
JWDOG.VXD which sets up an NMI handler.

Note that the JWDOG.VXD is never installed automatically. You must add this line manually.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 10 of 61

Windows 95

The following files must be copied to the Windows 95 system directory:

JIDA.DLL
JIDAV.VXD
JWDOGV.VXD
JWDOGR.EXE

To set up the drivers manually the following line must be added to [386Enh] section of the
SYSTEM.INI file located in the Windows directory:

device=JIDAV.VXD
device=JWDOGV.VXD

Note that if you do not intend to use the watchdog functionality then you do not need to load the
JWDOG.VXD which sets up an NMI handler.

Note that the JWDOG.VXD is never installed automatically. You must add this line manually.

Windows CE

The following files must be copied to the Windows directory:

JIDA.DLL
JIDAC.DLL

To do that add these line to the MODULES section of any *.BIB file:

jida.dll $(_FLATRELEASEDIR)\jida.dll NK SH
jidac.dll $(_FLATRELEASEDIR)\jidac.dll NK SH

If you want to run the demo also add:

jidatst.exe $(_FLATRELEASEDIR)\jidatst.exe NK S

Place the three files into any files directory.

To set up the drivers manually add these line in any *.REG file:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\JidaC]
 "Dll"="jidac.dll"
 "Prefix"="JDA"
 "Index"=dword:1
 "Order"=dword:9

Build your new Windows CE operating system.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 11 of 61

Linux

A separate package is available includes pre-compiled JIDA modules for the following kernels:

• 2.2.x
• 2.4.x

The Linux JIDA package contains the following files/directories:

JidaDrv Contains partially linked versions of the JIDA kernel driver for 2.2.x and 2.4.x kernels
JidaLib Contains a partially linked version of the JIDA interface library
JidaTst Contains the source code for the general JIDA test application
JWDogTst Contains the source code for the JIDA watchdog test application

Makefile Main makefile

Prerequisites

In order to build and install the Linux JIDA driver and interface library you need to have ROOT privileges.

Please make sure, that /usr/src/linux contains or points to the sources (or at least the header files) of
the kernel for which you want to build the JIDA package.

Build and Installation

Type 'make all' to build the JIDA kernel driver matching the kernel version located in /usr/src/linux, the
JIDA interface library for your installed libc version, and the corresponding test utilities.

The make utility will automatically chose the appropriate partially linked driver library for the kernel
located in /usr/src/linux and build the kernel driver module jida.o.

If the build is successful, the following JIDA files can be found in the respective directories:

Directory Files(s) Description
JidaDrv jida.o The JIDA kernel driver module for the respective kernel.
JidaLib Jida.h and JWinDefs.h

or jidakiss.h
Header files to be included by the user's application
accessing the JIDA interface.

 libjida.a, libjida.so Static and shared JIDA interface libraries to be linked to
the user's application.

JidaTst jidatst General JIDA test application.
JWDogTst jwdogtst JIDA watchdog test application.

Running 'make install' will copy the JIDA modules to the appropriate directories:

jida.o /lib/modules/'KERNEL_VERSION'/misc
libjida.so,
libjida.a

/usr/lib

Jida.h, JWinDefs.h,
jidakiss.h

/usr/include

jidatst, jwdogtst /usr/bin

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 12 of 61

Now you should run the sample application jidatst, which will display the following message:

JIDA system driver is incompatible or not installed.
Would you like to install it? (yes or no)

If you answer this question with 'yes' or 'y', the device node /dev/jida is created and the driver module
jida.o is loaded.

Afterwards some basic JIDA test calls will be performed which display their results on the screen. If you
see these results, the JIDA interface is operational.

In order to be able to access the JIDA interface from your own (non-root) application, you have to make
sure, that the JIDA driver module is loaded.

There are two recommended ways to do this:

1. Add an insmod jida instruction to one of the Linux initialization scripts.

2. Add the following entry to your /etc/conf.modules file:

 alias char-major-99 jida

This way jida.o will be loaded dynamically on calling JidaDllInitialize. However, this
method only works if either KERNELD or KMOD are active and you are using a jida.o
compiled for your kernel version.

Please make sure to include the files Jida.h and JWinDefs.h in your JIDA application.

As an alternate method you can include the jidakiss.h instead of the previous two header files. This
header file uses only simple ANSI C data types and does not rely on any other typedefs made in other
header files. It is however untested and solely provided for the convenience of users who have had limited
exposure to other operating systems or who find the use of too many abstract typedefs difficult to
understand. There is no support for 16 bit characters.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 13 of 61

VxWorks

A separate package is available that contains the VxWorks version of JIDA.

You must install the following products first:

• Wind River Tornado 2.0 (VxWorks 5.4, UGL 1.2) or Tornado 2.2 (VxWorks 5.5)
• BSP Pentium or 486

VxWork issues

• Because VxWorks uses 8 bit characters there is no support for UNICODE.
• The Restart option of the watch dog API issues an NMI when the watch dog expires. If desired you

can add your own NMI Handler.
• You need to include the JWinDefs.h header file before including the Jida.h.

As an alternate method you can include the jidakiss.h instead of the previous two header files.
This header file uses only simple ANSI C data types and does not rely on any other typedefs made
in other header files. It is however untested and solely provided for the convenience of users who
have had limited exposure to other operating systems or who find the use of too many abstract
typedefs difficult to understand.

Installation

Please make sure that Tornado has been installed properly.

All paths are relative to the Tornado root that is C:\Tornado by default.

Board Support Package BSP

First of all it is recommended that you create a new BSP based on the PENTIUM or 486 BSP. The
location of the new BSP will be referred to as target\config\<BSP> in this documentation.

Driver Files

Copy these files to your Tornado directory

target\lib\objPENTIUMgnuvx\JIDA.a
target\lib\objI80486gnuvx\JIDA.a
target\lib\objPENTIUMgnuvx\JIDA.o
target\lib\objI80486gnuvx\JIDA.o
target\h\jida.h
target\h\win2unix.h

Using the Driver

After that you are ready to create a new Tornado project based on the new BSP.

There are a number of ways to include the jida.a library to your project. One way of doing that is to
add the name jida.a to the EXTRA_MODULES or LIB macro in the projects settings.

As an alternative the JIDA Interface is also provided as a single object file jida.o. Please note that can
either use jida.a or jida.o but not both at the same time.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 14 of 61

The library also contains two demo functions that correspond to the JIDATST and JWDOGTST in the
documentation.

You can call them with jidaTest() and jidaTestWD() respectively. Please note that need to run
jidaTest() before running jidaTestWD(). The functions will only be pulled in if they are referenced.

Answer the questions with y for yes, n for no, o for ok, and c for cancel. You need to press return after
the letter.

The Restart option of the watch dog API issues an NMI when the watch dog expires. If desired you can
add your own NMI Handler.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 15 of 61

Additional Programs

LCD Hot Key Support

This tool enables hot keys to change the contrast and back light voltage for LCD panels under Windows
9x/NT/2000/XP.

You need these files in addition to the JIDA binaries:

JLcdKeyX.exe
JLcdKeyD.dll

Run JLcdKeyX.exe from your StartUp group or registry Run key.

The hot key assignment is as follows:

Key Action
Ctrl+Alt+1 Decrease contrast
Ctrl+Alt+2 Increase contrast
Ctrl+Alt+3 Set contrast to 50%
Ctrl+Alt+F1 Decrease backlight
Ctrl+Alt+F2 Increase backlight
Ctrl+Alt+F3 Set backlight to 66%

IMPORTANT NOTE: The JIDA.DLL MUST be located in the Windows or Windows System directory
for this to work. It is NOT sufficient that the JIDA.DLL is in the same directory as JlcdKeyX.exe.
There is no error message to indicate this faulty configuration. The hot keys simply have no effect.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 16 of 61

Sample Programs

The sample programs JIDATST and JWDOGTST are just that: sample programs. They are not intended
to serve any useful purpose. To learn how they work please look at the provided source code. Please
note that JIDATST dynamically loads the driver while JWDOGTST does not.

THESE PROGRAMS ARE INTENDED FOR SOFTWARE DEVELOPERS AND ARE OF NO INTEREST
TO END USERS!

YOU SHOULD NEVER SHIP THESE PROGRAMS (AS THEY ARE) TO END USERS!

PLEASE NOTE THAT AFTER RUNNING JWDOGTST THE BOARD MIGHT BE ***RESET*** OR
PRODUCE A ***BLUE SCREEN*** WITHOUT PRIOR NOTICE. DATA MIGHT BE LOST! THIS
BEHAVIOR IS BY DESIGN. SEE THE SOURCE CODE FOR DETAILS!

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 17 of 61

Programming Overview

All API functions are exported from the JIDA.DLL dynamic link library. UNICODE is supported.
JIDA.DLL is binary compatible between Windows 9x and NT/2000/XP. A different version with the same
name is supplied for Windows CE.

A header file Jida.h and import library JIDA.LIB for C/C++ are provided in the INC and LIB
directories. The header file is the same on all Windows versions.

The file JIDATST.CPP contains an example that demonstrates the JIDA functionality under Microsoft
Visual C++.

The file JWDOGTST.CPP contains an example that demonstrates the basic watchdog functionality under
Microsoft Visual C++.

Initializing the DLL

Before any other API is to be used you must initialize the DLL using JidaDllInitialize. Before
your application terminates you must call JidaDllUninitialize to allow proper resource clean up.

• JidaDllGetVersion
• JidaDllInitialize
• JidaDllUninitialize
• JidaDllIsAvailable
• JidaDllInstall

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 18 of 61

Establishing a connection to a board

The JIDA API is based on the board concept. A board is a physical hardware component. At the moment
each board must have a BIOS or DOS TSR that either provides a 16 bit real mode or 32 bit protected
mode entry point that contains support functions for the underlying hardware.

Each board has a unique seven letter name that corresponds directly with the physical type of board.
Examples are "P388", "P488", "LEU1" or "SPRINT5". Boards are also divided into classes. The currently
defined classes are "CPU", "VGA", and "IO". Each board has one primary class but it can also have any
number of secondary classes.

This allows you to talk to a class of boards that has a particular functionality without knowing the exact
name of the board.

The function JidaBoardCount can be used to query the number of available boards either in total or for
a given class. Note that since one board can belong to any number of classes the total number of boards
is not necessarily the sum of all of the number of boards for each class. For example "LEU1" is primarily
a CPU class board but it also has an on board VGA, so it has that class as its secondary class.

The maximum possible configuration at the moment would be a CPU board with onboard VGA, a second
VGA and an IO card plugged into a slot.

So you would have a total of three physical boards. One for CPU class, two boards for VGA, and one for
IO.

Most JIDA API calls take a board handle as a first parameter. You can obtain such a handle thru one of
two functions: JidaBoardOpen which takes a class name or board index as a parameter and
JidaBoardOpenByName which takes a unique board name.

You can keep the handle open for as long as you like. The handle must be closed with
JidaBoardClose.

• JidaBoardCount
• JidaBoardOpen
• JidaBoardOpenByName
• JidaBoardClose

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 19 of 61

Generic board functions

A number of JidaBoard* functions allow you to retrieve general board class independent information
about the board.

• JidaBoardGetName
• JidaBoardGetInfo
• JidaBoardGetBootCounter
• JidaBoardGetRunningTimeMeter
• JidaBoardGetBootErrorLog

VGA functions

JidaVga* functions are implemented by boards that belong to the VGA class. They primarily control
LCD backlight brightness and contrast.

• JidaVgaGetContrast
• JidaVgaSetContrast
• JidaVgaGetContrastEnable
• JidaVgaSetContrastEnable
• JidaVgaGetBacklight
• JidaVgaSetBacklight
• JidaVgaGetBacklightEnable
• JidaVgaSetBacklightEnable
• JidaVgaEndDarkBoot

Storage areas

Each board can have a number of storage areas. A storage area is piece of physical memory that
usually provides persistent storage for the user's application. All of the JidaStorageArea* functions
take a type as a second parameter. This type is a combination of one of the predefined type constants
for EEPROM, FLASH, CMOS, or RAM and a zero-based index of the area if there are more areas of a
particular type.

• JidaStorageAreaCount
• JidaStorageAreaType
• JidaStorageAreaSize
• JidaStorageAreaRead
• JidaStorageAreaWrite

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 20 of 61

I2C buses

JidaI2C* functions provide access to the onboard I2C bus. Note that since I2C addresses may change
you should not use these functions to access any Kontron onboard devices. You should use these
functions only if you have your own devices connected to the onboard bus. PLEASE NOTE that bus
numbers can change on board implementation. Use JidaI2CType to determine the bus type.

• JidaI2CCount
• JidaI2CIsAvailable
• JidaI2CType
• JidaI2CReadRegister
• JidaI2CWriteRegister
• JidaI2CRead
• JidaI2CWrite
• JidaI2CWriteReadCombined

Watchdog

Some Kontron PC boards are equipped with a watchdog component that allows the system to be reset
when the running application has stopped responding.

This works by setting up a time interval either in the BIOS setup or thru API functions like
JidaWDogSetConfig that are called directly by the application. After that the application must
continuously call another API function named JidaWDogTrigger that triggers the watchdog. If it fails
to call that function within the set up time period the PC is reset.

The Kontron Watchdog Win32 API is obsolete and has been incorporated into the JIDA API.

• JidaWDogCount
• JidaWDogIsAvailable
• JidaWDogTrigger
• JidaWDogGetConfigStruct
• JidaWDogSetConfigStruct
• JidaWDogSetConfig
• JidaWDogDisable

Porting from JWDOG API to JIDA:

All watchdog functions have been moved to JIDA. All functions have been renamed from JWDog* to
JidaWDog* and now have a JIDA handle and a type as the first two parameters. See JWDogTst.cpp
and Jida.h for details.

Easy steps to convert your application to the new JIDA watchdog API:

• Replace JWDogInitialize with JidaDllInitialize
• Replace JWDogUninitialize with JidaDllUninitialize
• Declare a variable HJIDA hJida;
• Call JidaBoardOpen(JIDA_BOARD_CLASS_CPU,0,0,&hJida) to obtain a JIDA board handle
• Call JidaBoardClose(hJida) to free the JIDA handle at the end
• Replace all function prefixes from JWDog to JidaWDog
• Prefix these two arguments to all watchdog calls: hJida,0,
• Replace the header include from jwdog.h to Jida.h
• Link with jida.lib instead of jwdog.lib

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 21 of 61

CPU Performance

JidaPerformance* functions provide access to the CPU Performance settings.

• JidaPerformanceGetCurrent
• JidaPerformanceSetCurrent
• JidaPerformanceGetPolicyCaps
• JidaPerformanceGetPolicy
• JidaPerformanceSetPolicy

Input/Output Port

JidaIO* functions provide access to Digital Input/Output Ports. Many boards do not have any user
accessible IO ports, so these functions return errors. XScale boards usually do have support for GPIOs.

• JidaIOCount
• JidaIOIsAvailable
• JidaIORead
• JidaIOWrite
• JidaIOXorAndXor
• JidaIOGetDirection
• JidaIOSetDirection
• JidaIOGetDirectionCaps
• JidaIOGetName

Board Sensor Functions

These functions provide access to the board temperature, fan, and voltage sensors.

• JidaTemperatureCount
• JidaTemperatureGetInfo
• JidaTemperatureGetCurrent

• JidaFanCount
• JidaFanGetInfo
• JidaFanGetCurrent

• JidaVoltageCount
• JidaVoltageGetInfo
• JidaVoltageGetCurrent

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 22 of 61

JIDA32 Library API Programmer's Reference

JidaDllGetVersion

Declaration

DWORD WINAPI JidaDllGetVersion(void);
Declare Function JidaDllGetVersion Lib "JIDA" () As Long

Returns:
The major version number of the API is located in the upper 16 bits and the minor version
number of the API in the lower 16 bits of the return value.

Description:
This function returns the version number of the JIDA API. This is the only function that can be
called before JidaDllInitialize(). To check for version compliance you can compare the
major number to the constant JidaDllVersionMajor as defined in your version of the header
file.

JidaDllInitialize

Declaration

BOOL WINAPI JidaDllInitialize(void);
Declare Function JidaDllInitialize Lib "JIDA" () As Integer

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This initializes the JIDA API for use by the application. A failure indicates that the driver is not
properly installed or outdated. Calls to JidaDllInitialize and JidaDllUninitialize
can be nested but must be balanced.

JidaDllUninitialize

Declaration

BOOL WINAPI JidaDllUninitialize(void);
Declare Function JidaDllUninitialize Lib "JIDA" () As Integer

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This function must be called before the application terminates after it has successfully called
JidaDllInitialize. Calls to JidaDllInitialize and JidaDllUninitialize can be
nested but must be balanced.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 23 of 61

JidaDllIsAvailable

Declaration

BOOL WINAPI JidaDllIsAvailable(void);
Declare Function JidaDllIsAvailable Lib "JIDA" () As Integer

Returns:
TRUE (1) if a previous call to JidaDllInitialize was successful and the JIDA functionality
is available. FALSE (0) on failure.

Description:
This function allows you to determine if the JIDA functionality is available.

JidaDllInstall

Declaration

BOOL WINAPI JidaDllInstall(BOOL install);

Parameters:
install

TRUE (1) on for install. FALSE (0) for uninstall.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This function installs or uninstalls the underlying JIDA driver. You can call this function from your
setup program or if JidaDllInitialize fails. Note that the system may need to be rebooted
for the changes to become effective. Under NT you need administrative rights to use this function
successfully. After this function succeeds you can call JidaDllInitialize a second time. If
this function fails again then a reboot is required to load the drivers (under Windows 9x). If it
succeeds then the drivers have been loaded dynamically and JIDA is ready to be used (under
Windows NT and Windows CE). The driver will also load every time you start Windows in the
future. Please note that under Windows CE the drivers will only be loaded again if the registry is
retained on reboots.

Note that under Windows 9x the JWDOG.VXD which is required by the JidaWDog* functions is
never installed automatically by this function. You must add this driver manually. See the
Windows 9x installation section.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 24 of 61

JidaBoardCount

Declaration

DWORD WINAPI JidaBoardCount(LPCTSTR pszClass, DWORD dwFlags);

Parameters:
pszClass

The class name of the board. So far the following classes have been defined:
JIDA_BOARD_CLASS_CPU

Basic CPU boards with BIOS
JIDA_BOARD_CLASS_VGA

VGA (LCD) boards with video BIOS
JIDA_BOARD_CLASS_IO

IO cards
This value can be NULL in wh ich case the total number of boards will be returned

dwFlags
Can be any combination of the following flags:
JIDA_BOARD_OPEN_FLAGS_PRIMARYONLY

Count only boards that do have the given class name as a primary class.
Otherwise any boards that fit the given class in any way will be returned.

Returns:

Number of available boards.

Description:
JIDA_BOARD_OPEN_FLAGS_PRIMARYONLY

JidaBoardOpen

Declaration

BOOL WINAPI JidaBoardOpen(LPCTSTR pszClass, DWORD dwNum, DWORD dwFlags,
PHJIDA phJida);

Parameters:
pszClass

See JidaBoardCount.
dwNum

Zero based number of the board within the given class.
dwFlags

See JidaBoardCount.
phJida

Pointer to a location the will receive the handle to the board.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Opens a board that fits the given class.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 25 of 61

JidaBoardOpenByName

Declaration

BOOL WINAPI JidaBoardOpenByName(LPCTSTR pszName, PHJIDA phJida);

Parameters:
pszName

Name of the board. Currently defined names are:
"D101", "D201", "D401", "D501", "P386", "P388", "P488", "P586", "P588", "P489",
"PGX1", "ROI1", "PISB", "LEU1", "LEV1", "LEU2", "LEU3", "LEU6", "LEUE", "BQC3",
"BQP3", "BQG1", "MOD1", "MOD2", "MOD5", "MOD6", "MOD7", "MOD8", "MOD9",
"XBD1", "XBD2", "XBD3", "TAHOE", "A586", "SIEB", "SIM1", "MODI", "WOB1",
"MULTI4", "SPRINT5", "SPRINT6", "APG1", "MIO2".

phJida
Pointer to a location the will receive the handle to the board.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:

JidaBoardClose

Declaration

BOOL WINAPI JidaBoardClose(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Closes the connection to a board.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 26 of 61

JidaBoardGetName

Declaration

BOOL WINAPI JidaBoardGetName(HJIDA hJida, LPTSTR pszName, DWORD dwSize);

Parameters:
hJida

Board handle.
pszName

Location that will receive the name of the board.
dwSize

Size of the buffer location. Should be at least JIDA_BOARD_MAX_SIZE_ID_STRING
characters.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the unique name of the board.

JidaBoardGetInfo

Declaration

BOOL WINAPI JidaBoardGetInfo(HJIDA hJida, PJIDABOARDINFO pBoardInfo);

Parameters:
hJida

Board handle.
pBoardInfo

Location of a JIDABOARDINFO structure that will receive the static information of the
board. The structure contains the following information:
DWORD dwSize

Must be initialized by the caller with sizeof(JIDABOARDINFO).
DWORD dwFlags

Reserved. Always 0.
TCHAR szPrimaryClass[JIDA_BOARD_MAX_SIZE_ID_STRING]

Primary class name. See JidaBoardCount for possible values.
TCHAR szBoard[JIDA_BOARD_MAX_SIZE_ID_STRING]

Name of the board. See JidaBoardOpenByName for possible values.
TCHAR szBoardSub[JIDA_BOARD_MAX_SIZE_ID_STRING]

Subname of the board or empty. Usually the same as the board name and of no
particular use.

TCHAR szManufacturer[JIDA_BOARD_MAX_SIZE_ID_STRING]
Manufacturer name. Usually "JUMP".

SYSTEMTIME stManufacturingDate
Manufacturing date.

SYSTEMTIME stLastRepairDate
Date that the system was last repaired or refurbished. Valid only if later then the
manufacturing date.

TCHAR szSerialNumber[JIDA_BOARD_MAX_SIZE_SERIAL_STRING]
10 character unique serial number of the board. Please note that this number is
only unique for each board name. To obtain a Kontron wide unique serial
number prefix szBoard string to the serial number.

WORD wHardwareRevision

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 27 of 61

Hardware revision number. Major number in upper byte. Minor number in lower
byte.

WORD wFirmwareRevision
Firmware revision number. Major number in upper byte. Minor number in lower
byte.

WORD wJidaRevision
BIOS Jida interface revision number. Major number in upper byte. Minor number
in lower byte. Only valid if driver has the option of querying the BIOS.

WORD wFeatureNumber
Feature Number of the BIOS or the driver. Usually 0 or 1.

TCHAR szClasses[JIDA_BOARD_MAX_SIZE_CLASSES_STRING]
Comma separated list of all class names that are applicable for the board. See
JidaBoardCount for possible values.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves a structure that contains information about the board that does not change.

JidaBoardGetBootCounter

Declaration

BOOL WINAPI JidaBoardGetBootCounter(HJIDA hJida, LPDWORD pdwCount);

Parameters:
hJida

Board handle.
pdwCount

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieve the watchdog boot counter.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 28 of 61

JidaBoardGetRunningTimeMeter

Declaration

BOOL WINAPI JidaBoardGetRunningTimeMeter(HJIDA hJida, LPDWORD pdwCount);

Parameters:
hJida

Board handle.
pdwCount

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
The time period in hours that the system has been running.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 29 of 61

JidaBoardGetOption

Declaration

BOOL WINAPI JidaBoardGetOption(HJIDA hJida, DWORD dwOption, LPDWORD
pdwSetting);

Parameters:
hJida

Board handle.
dwOption
pdwSetting

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
No functionality in the current version of JIDA.

JidaBoardSetOption

Declaration

BOOL WINAPI JidaBoardSetOption(HJIDA hJida, DWORD dwOption, DWORD
dwSetting);

Parameters:
hJida

Board handle.
dwOption
dwSetting

New value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
No functionality in the current version of JIDA.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 30 of 61

JidaBoardGetBootErrorLog

Declaration

BOOL WINAPI JidaBoardGetBootErrorLog(HJIDA hJida, DWORD dwType, PDWORD
pdwLogType, LPBYTE pBytes, PDWORD pdwLen);

Parameters:
hJida

Board handle.
dwType

Reserved. Must be 0.
pdwLogType

Pointer to location that will receive the type of the boot error log
0

PhoenixBIOS release 6.0/6.1
1

AMIBIOS core 8.
pBytes

Pointer to location that will receive the error log structure. If this pointer is NULL then no
data is returned but the pdwLogType and entries pdwLen will still be updated. This can
be used to determine the size of the buffer needed for a subsequent call to this function.

pdwLen
Pointer to location that will receive the length of the boot error log.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
This function retrieves the boot or POST error log. The POST error log is a list of serialized
entries. An entry consists of a length byte followed by POST error information. The length byte
specifies the size of the entry not including the length byte. The error information is system core
BIOS specific. The type code returned by the function can be used to identify the structure of the
POST error information. The error log is terminated by a null entry, i.e. a length byte of 0.

PhoenixBIOS release 6.0/6.1 POST error log entry structure

Offset Size Name Description
+00h BYTE length length of this POST error log entry not including this field, i.e. 6
+01h BYTE errCode error code (see table below)
+02h BYTE errSubCodeValid 0 if the errSubCode field is invalid / otherwise this field contains

the number of valid hexadecimal digits (i.e. nibbles) in the
errSubCode field

+03h DWORD errSubCode optional numerical error data

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 31 of 61

Phoenix BIOS release 6.0/6.1 POST error codes

Name Value Description
ERR_DISK_FAILED 000h harddisk error / errSubCode contains the drive number
 001h-00Fh reserved for other disk errors
ERR_KBD_STUCK 010h stuck key detected / errSubCode may contain a scan code
ERR_KBD_FAILED 011h keyboard test failed
ERR_KBD_KCFAIL 012h keyboard controller test failed
ERR_KBD_LOCKED 013h keyboard is locked
 014h-01Fh reserved for other keyboard errors
ERR_VIDEO_SWITCH 020h CGA/MDA video configuration error
ERR_LOCAL_MEMORY 021h UMA video memory initialization failure
 022h-02Fh reserved for other video errors
ERR_SYS_MEM_FAIL 030h system memory error
ERR_SHAD_MEM_FAIL 031h shadow memory error
ERR_EXT_MEM_FAIL 032h extended memory error
ERR_MEM_TYPE_MIX 033h invalid combination of memory module types
ERR_MEM_ECC_SINGLE 034h single bit ECC memory error
ERR_MEM_ECC_MULTIPLE 035h multible bit ECC memory error
ERR_MEM_DECREASED 036h size of available memory decreased
ERR_DMI_MEM_FAIL 037h not enough memory for DMI info structure
 038h-03Fh reserved for other memory errors
 040h-04Fh reserved for other errors
ERR_CMOS_BATTERY 050h CMOS battery down
ERR_CMOS_CHECKSUM 051h CMOS checksum invalid
ERR_PW_CHECKSUM 052h CMOS checksum invalid
 053h-05Fh reserved for other CMOS errors
ERR_TIMER_FAILED 060h system timer error
 061h-06Fh reserved for other timer errors
ERR_RTC_FAILED 070h realtime clock error
ERR_RTC_INV_DATE_TIME 071h invalid realtime clock date/time
 072h-07Fh reserved for other realtime clock errors
ERR_CONFIG_FAILED 080h system configuration error
ERR_CONFIG_MEMORY 081h memory configuration error
 082h-08Fh reserved for other configuration errors
ERR_NVRAM 090h NVRAM error
 091h-09Fh reserved for other NVRAM errors
ERR_COP 0A0h coprocessor error
 0A1h-0AFh reserved for other coprocessor errors
ERR_FLOPPYA_FAILED 0B0h diskette drive A error
ERR_FLOPPYB_FAILED 0B1h diskette drive B error
ERR_FLOPPYA_INCORRECT 0B2h incorrect diskette drive type A
ERR_FLOPPYB_INCORRECT 0B3h incorrect diskette drive type B
 0B4h-0BFh reserved for other diskette drive errors
 0C0h-0CFh reserved for other errors
ERR_CACHE_FAILED 0D0h cache error
ERR_L2_CACHE_RANGE 0D1h main memory size exceeds cache range
 0D2h-0DFh reserved for other cache errors
ERR_IO_ADDRESS 0E0h IO address error
ERR_IO_COM 0E1h COM port error
ERR_IO_LPT 0E2h LPT port error
ERR_IO_CONFLICT 0E3h I/O resource conflict
 0E4h-0EFh reserved for other I/O errors
 0F0h-0FFh reserved for other errors

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 32 of 61

JidaVgaGetContrast

Declaration

BOOL WINAPI JidaVgaGetContrast(HJIDA hJida, LPDWORD pdwSetting);

Parameters:
hJida

Board handle.
pdwSetting

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the contrast setting for the LCD of any VGA class board. The value ranges from 0 to
JIDA_VGA_CONTRAST_MAX (255).

JidaVgaSetContrast

Declaration

BOOL WINAPI JidaVgaSetContrast(HJIDA hJida, DWORD dwSetting);

Parameters:
hJida

Board handle.
dwSetting

New value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Sets the contrast setting for the LCD of any VGA class board. The value ranges from 0 to
JIDA_VGA_CONTRAST_MAX (255).

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 33 of 61

JidaVgaGetContrastEnable

Declaration

BOOL WINAPI JidaVgaGetContrastEnable(HJIDA hJida, LPDWORD pdwSetting);

Parameters:
hJida

Board handle.
pdwSetting

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the contrast voltage setting for the LCD of any VGA class board. TRUE (1) indicates
on, FALSE (0) indicates off.

JidaVgaSetContrastEnable

Declaration

BOOL WINAPI JidaVgaSetContrastEnable(HJIDA hJida, DWORD dwSetting);

Parameters:
hJida

Board handle.
dwSetting

New value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Sets the contrast voltage for the LCD of any VGA class board. TRUE (1) indicates on, FALSE
(0) indicates off.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 34 of 61

JidaVgaGetBacklight

Declaration

BOOL WINAPI JidaVgaGetBacklight(HJIDA hJida, LPDWORD pdwSetting);

Parameters:
hJida

Board handle.
pdwSetting

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the backlight brightness setting for the LCD of any VGA class board. The value ranges
from 0 to JIDA_VGA_BACKLIGHT_MAX (255).

JidaVgaSetBacklight

Declaration

BOOL WINAPI JidaVgaSetBacklight(HJIDA hJida, DWORD dwSetting);

Parameters:
hJida

Board handle.
dwSetting

New value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Sets the backlight brightness setting for the LCD of any VGA class board. The value ranges from
0 to JIDA_VGA_BACKLIGHT_MAX (255).

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 35 of 61

JidaVgaGetBacklightEnable

Declaration

BOOL WINAPI JidaVgaGetBacklightEnable(HJIDA hJida, LPDWORD pdwSetting);

Parameters:
hJida

Board handle.
pdwSetting

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the backlight voltage setting for the LCD of any VGA class board. TRUE (1) indicates
on, FALSE (0) indicates off.

JidaVgaSetBacklightEnable

Declaration

BOOL WINAPI JidaVgaSetBacklightEnable(HJIDA hJida, DWORD dwSetting);

Parameters:
hJida

Board handle.
dwSetting

New value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Sets the backlight voltage for the LCD of any VGA class board. TRUE (1) indicates on, FALSE
(0) indicates off.

JidaVgaEndDarkBoot

Declaration

BOOL WINAPI JidaVgaEndDarkBoot(DWORD dwReserved);

Parameters:
dwReserved

Must be 0.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This ends the dark boot if that option has been enabled in the BIOS. The screen will be no longer
be black and the current Windows screen will be visible.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 36 of 61

JidaStorageAreaCount

Declaration

DWORD WINAPI JidaStorageAreaCount(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Possible values are:

JIDA_STORAGE_AREA_UNKNOWN
JIDA_STORAGE_AREA_EEPROM
JIDA_STORAGE_AREA_FLASH
JIDA_STORAGE_AREA_CMOS
JIDA_STORAGE_AREA_RAM

The only type currently supported is JIDA_STORAGE_AREA_EEPROM and 0.
Use 0 to get the total number of storage areas.

Returns:

Number of available storage areas.

Description:
Retrieves the number of persistant user storage areas of the specified type that are on the given
board.

JidaStorageAreaType

Declaration

DWORD WINAPI JidaStorageAreaType(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Zero based storage area index.

Returns:
Type of storage area.

Description:
Retrieves the type of storage area.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 37 of 61

JidaStorageAreaSize

Declaration

DWORD WINAPI JidaStorageAreaSize(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Possible values are a zero based index ORed with one of the following flags:

JIDA_STORAGE_AREA_UNKNOWN
JIDA_STORAGE_AREA_EEPROM
JIDA_STORAGE_AREA_FLASH
JIDA_STORAGE_AREA_CMOS
JIDA_STORAGE_AREA_RAM

The only type currently supported is JIDA_STORAGE_AREA_EEPROM and a index of 0.

Returns:

Size of storage area in bytes.

Description:
Retrives the size of the given storage area.

JidaStorageAreaBlockSize

Declaration

DWORD WINAPI JidaStorageAreaBlockSize(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

See JidaStorageAreaSize for possible values.

Returns:
Block size of storage area or 0 in not split into blocks.

Description:
No functionality in the current version of JIDA.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 38 of 61

JidaStorageAreaRead

Declaration

BOOL WINAPI JidaStorageAreaRead(HJIDA hJida, DWORD dwType, DWORD
dwOffset, LPBYTE pBytes, DWORD dwLen);

Parameters:
hJida

Board handle.
dwType

See JidaStorageAreaSize for possible values.
dwOffset

Zero based offset into the storage area.
pBytes

Pointer to location that will receive the bytes.
dwLen

Number of bytes to read.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Read bytes from a storage area.

JidaStorageAreaWrite

Declaration

BOOL WINAPI JidaStorageAreaWrite(HJIDA hJida, DWORD dwType, DWORD
dwOffset, LPBYTE pBytes, DWORD dwLen);

Parameters:
hJida

Board handle.
dwType

See JidaStorageAreaSize for possible values.
dwOffset

Zero based offset into the storage area.
pBytes

Pointer to location that contains the bytes.
dwLen

Number of bytes to write.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Write bytes to the storage area.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 39 of 61

JidaStorageAreaErase

Declaration

BOOL WINAPI JidaStorageAreaErase(HJIDA hJida, DWORD dwType, DWORD
dwOffset, DWORD dwLen);

Parameters:
hJida

Board handle.
dwType

See JidaStorageAreaSize for possible values.
dwOffset

Zero based offset into the storage area.
dwLen

Number of bytes to erase.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
No functionality in the current version of JIDA.

JidaStorageAreaEraseStatus

Declaration

BOOL WINAPI JidaStorageAreaEraseStatus(HJIDA hJida, DWORD dwType,
DWORD dwOffset, DWORD dwLen, LPDWORD lpStatus);

Parameters:
hJida

Board handle.
dwType

See JidaStorageAreaSize for possible values.
dwOffset

Zero based offset into the storage area.
dwLen
lpStatus

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
No functionality in the current version of JIDA.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 40 of 61

JidaI2CCount

Declaration

DWORD WINAPI JidaI2CCount(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
Number of available I2C buses.

Description:
Retrieves the number of I2C buses on the board. (In the current implementation the last bus is
always the JILI bus if present. This may however change in a future version.)

JidaI2CIsAvailable

Declaration

BOOL WINAPI JidaI2CIsAvailable(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.

Returns:
TRUE (1) if the give type of I2C bus is present. FALSE (0) otherwise.

Description:
Queries whether the I2C bus of the given type is available.

JidaI2CType

Declaration

DWORD WINAPI JidaI2CType(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.

Returns:
JIDA_I2C_TYPE_UNKNOWN unknown or special purposes
JIDA_I2C_TYPE_PRIMARY primary I2C bus
JIDA_I2C_TYPE_SMB system management bus
JIDA_I2C_TYPE_JILI JILI interface

Description:
Queries the bus type of the given I2C bus.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 41 of 61

JidaI2CRead

Declaration

BOOL WINAPI JidaI2CRead(HJIDA hJida, DWORD dwType, BYTE bAddr, LPBYTE
pBytes, DWORD dwLen);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.
bAddr

Address of the device on the I2C bus, the full 8 bits as it is written to the bus.
Bit 0 should be always 1 to read from regular I2C devices.

pBytes
Pointer to location that will receive the bytes.

dwLen
Number of bytes to read.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Reads bytes from a device on the I2C bus.

JidaI2CWrite

Declaration

BOOL WINAPI JidaI2CWrite(HJIDA hJida, DWORD dwType, BYTE bAddr,
LPBYTE pBytes, DWORD dwLen);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.
bAddr

Address of the device on the I2C bus, the full 8 bits as it is written to the bus.
Bit 0 should be always 0 for regular I2C devices.

pBytes
Pointer to location that contains the bytes.

dwLen
Number of bytes to write.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Writes bytes to a device on the I2C bus.
WARNING: Improperly using this function with certain buses and devices may cause
PERMANENT DAMAGE to your system and may prevent your board from booting. The
most likely scenario is to accidentally overwrite the configuration data in the EEPROM that is
attached to the SMBus and located on the RAM module. This may make the RAM module
permanently inaccessible to the system and will therefore stop the boot process.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 42 of 61

JidaI2CWriteReadCombined

Declaration

BOOL WINAPI JidaI2CWriteReadCombined(HJIDA hJida, DWORD dwType, BYTE
bAddr, LPBYTE pBytesWrite, DWORD dwLenWrite, LPBYTE pBytesRead, DWORD
dwLenRead);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.
bAddr

Address of the device on the I2C bus, the full 8 bits as it is written to the bus.
Bit 0 should be always 0 for regular I2C devices. During the read cycle this functions
sets Bit 0 automatically.

pBytesWrite
Pointer to location that contains the bytes.

dwLenWrite
Number of bytes to write.

pBytesRead
Pointer to location that will receive the bytes.

dwLenRead
Number of bytes to read.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Writes bytes to a device on the I2C bus, then reads the specified number of bytes in combined
mode. The difference between using this function instead of the separate write and read
functions is that at the end of the write this function does not include a STOP condition. The
second START condition for the read is present.
WARNING: Improperly using this function with certain buses and devices may cause
PERMANENT DAMAGE to your system and may prevent your board from booting. The
most likely scenario is to accidentally overwrite the configuration data in the EEPROM that is
attached to the SMBus and located on the RAM module. This may make the RAM module
permanently inaccessible to the system and will therefore stop the boot process.

JidaI2CReadRegister

Declaration

BOOL WINAPI JidaI2CReadRegister(HJIDA hJida, DWORD dwType, BYTE
bAddr, WORD wReg, LPBYTE pDataByte);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.
bAddr

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 43 of 61

Address of the device on the I2C bus, the full 8 bits as it is written to the bus.
Bit 0 should be always 0 for regular I2C devices. During the read cycle this functions
sets Bit 0 automatically.

wReg
Register index of the device.

pDataByte
Pointer to location that will receive the byte.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Reads a register from a device on the I2C bus.

JidaI2CWriteRegister

Declaration

BOOL WINAPI JidaI2CWriteRegister(HJIDA hJida, DWORD dwType, BYTE
bAddr, WORD wReg, BYTE bData);

Parameters:
hJida

Board handle.
dwType

Zero-based number of the I2C bus.
bAddr

Address of the device on the I2C bus, the full 8 bits as it is written to the bus.
Bit 0 should be always 0 for regular I2C devices.

wReg
Register index of the device.

bData
Data byte.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Writes a register of a device on the I2C bus.
Please note that some devices need some time after the write before the next write or read can
be issued. For example most EEPROMs require a 10 ms delay before they can be accessed
again.
WARNING: Improperly using this function with certain buses and devices may cause
PERMANENT DAMAGE to your system and may prevent your board from booting. The
most likely scenario is to accidentally overwrite the configuration data in the EEPROM that is
attached to the SMBus and located on the RAM module. This may make the RAM module
permanently inaccessible to the system and will therefore stop the boot process.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 44 of 61

JidaIOCount

Declaration

DWORD WINAPI JidaIOCount(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
Number of available IO Ports.

Description:
On many boards this returns 0.

JidaIOIsAvailable

Declaration

BOOL WINAPI JidaIOIsAvailable(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.

Returns:
TRUE (1) if the give type of IO is present. FALSE (0) otherwise.

Description:
On many boards this returns FALSE.

JidaIORead

Declaration

BOOL WINAPI JidaIORead(HJIDA hJida, DWORD dwType, LPDWORD pdwData);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
pdwData
 Pointer to read value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Reads the current state of the IO Port. This includes the input and output values.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 45 of 61

JidaIOWrite

Declaration

BOOL WINAPI JidaIOWrite(HJIDA hJida, DWORD dwType, DWORD dwData);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
dwData
 Value to write to the port.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Writes to the output pins of the IO Port.

JidaIOXorAndXor

Declaration

BOOL WINAPI JidaIOXorAndXor(HJIDA hJida, DWORD dwType, DWORD
dwXorMask1, DWORD dwAndMask, DWORD dwXorMask2);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
dwXorMask1
dwAndMask
dwXorMask2

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This function reads the performs the function:

newPortValue = (((currentPortValue xor dwXorMask1) and dwAndMask) xor dwXorMask2)

If both xor-masks have the same value then this function inserts the bits of the xor-mask into the
ports bit locations where the and-mask is 1. The other bits remain unchanged.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 46 of 61

JidaIOGetDirection

Declaration

BOOL WINAPI JidaIOGetDirection(HJIDA hJida, DWORD dwType, LPDWORD pdwData);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
pdwData

Pointer to the location that will receive the current direction of the port pins. A 0 bit
indicates an OUTPUT, a 1 bit indicates an INPUT pin in the corresponding bit position.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Reads the current direction of the IO Port pins.

JidaIOSetDirection

Declaration

BOOL WINAPI JidaIOSetDirection(HJIDA hJida, DWORD dwType, DWORD dwData);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
dwData

Direction of the port pins. A 0 bit indicates an OUTPUT, a 1 bit indicates an INPUT pin in
the corresponding bit position.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Changes the direction of the pins of the IO Port. Fixed inputs and fixed outputs cannot be
changed.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 47 of 61

JidaIOGetDirectionCaps

Declaration

BOOL WINAPI JidaIOGetDirectionCaps(HJIDA hJida, DWORD dwType, LPDWORD
pdwInputs, LPDWORD pdwOutputs);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
pdwInputs

Pointer to the location that will receive the pins that are inputs. A 1 indicates a pin in the
corresponding bit position is capable of being an input.

pdwOutputs
Pointer to the location that will receive the pins that are outputs. A 1 indicates a pin in
the corresponding bit position is capable of being an output.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Reads the direction capabilities of the IO Port. For pins that are both input and output the
direction can be changed with the JidaIOSetDirection function.

JidaIOGetName

Declaration

BOOL WINAPI JidaIOGetName(HJIDA hJida, DWORD dwType, LPSTR pszName, DWORD
dwSize);

Parameters:
hJida

Board handle.
dwType

Zero-based number of IO Ports.
pszName
 Buffer that will be used to return the name of the IO Port.
dwSize
 Size of buffer

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This function is not implemented yet and will always return FALSE.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 48 of 61

JidaWDogCount

Declaration

DWORD WINAPI JidaWDogCount(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
Number of available watchdogs on this board.

Description:
Always returns 0 or 1 in the current version of JIDA.

JidaWDogIsAvailable

Declaration

BOOL WINAPI JidaWDogIsAvailable(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Must be 0.

Returns:

TRUE (1) if the give type of I2C bus is present. FALSE (0) otherwise.

Description:
Queries whether the watchdog of the given type is available. Currently only type 0 is
implemented.

JidaWDogTrigger

Declaration

BOOL WINAPI JidaWDogTrigger(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Must be 0.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
This function indicates that the application is still working properly and must be called on a
continues basis by the application to ensure that the system will not be restarted. This applies
only after that watchdog has been activated.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 49 of 61

JidaWDogDisable

Declaration

BOOL WINAPI JidaWDogDisable(HJIDA hJida, DWORD dwType);

Parameters:
hJida

Board handle.
dwType

Must be 0.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
This disables the watchdog. The application is not longer required to call JidaWDogTrigger.
This function is not implemented in any of the current watchdog versions. Once a
watchdog is turned on it can never be turned off again until the next hard reset. This behavior
may change in future versions.

JidaWDogSetConfig

Declaration

BOOL WINAPI JidaWDogSetConfig(HJIDA hJida, DWORD dwType, DWORD timeout,
DWORD delay, DWORD mode);

Parameters:
hJida

Board handle.
dwType

Must be 0.
timeout

This is the watchdog timeout in milliseconds. The application must continuously call
JidaWDogTrigger within that interval to prevent a reboot. Note that the min/max
values and the resolution depends on the underlying hardware. In many cases the
resolution is 200 ms.

delay
This is an initial delay in milliseconds that will be added to the first timeout period. This
allows the application to have a longer initialization phase without calling
JidaWDogTrigger and still be protected by the watchdog.

mode
This value can either be:
JWDModeRebootPC (0)

This will cause a hard reset without shutting down Windows when the watchdog
engages.

JWDModeRestartWindows (1)
This will shut down Windows in a proper manner when the watchdog engages.
This behavior is only implemented under Windows 9x. Other OS call the
NMI handler which should be implemented by the Embedded System Designer.

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 50 of 61

This function activates the watchdog with the given parameters. After that the application must
continuously call JidaWDogTrigger within the specified interval. The timeout value can be
changed at any time. The transition from JWDModeRebootPC to JWDModeRestartWindows
can only be made once. After that you cannot revert to JWDModeRebootPC. This behavior may
change in future versions.

JidaWDogSetConfigStruct

Declaration

BOOL WINAPI JidaWDogSetConfigStruct(HJIDA hJida, DWORD dwType,
PJWDCONFIG pConfig);

Parameters:
hJida

Board handle.
dwType

Must be 0.
pConfig

Pointer to a PJWDCONFIG structure.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This function activates the watchdog with the given parameters. After that the application must
continuously call JidaWDogTrigger within the specified interval.

JidaWDogGetConfigStruct

Declaration

BOOL WINAPI JidaWDogGetConfigStruct(HJIDA hJida, DWORD dwType,
PJWDCONFIG pConfig);

Parameters:
hJida

Board handle.
dwType

Must be 0.
pConfig

Pointer to a PJWDCONFIG structure.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
This function retrieves the watchdog parameters that were set by the application. The function
fails if the values have never been set. In the current implementation it will never return the values
set in the BIOS setup pages.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 51 of 61

JWDCONFIG Data Structure

Declaration

typedef struct {
 DWORD dwSize;
 DWORD dwTimeout;
 DWORD dwDelay;
 DWORD dwMode;
 } JWDCONFIG, * PJWDCONFIG;

Parameters:
dwSize

This must be initialized to sizeof(JWDCONFIG) before calling any of that functions
that deal with this structure.

dwTimeout
This is the watchdog timeout in milliseconds. The application must continuously call
JidaWDogTrigger within that interval to prevent a reboot.

dwDelay
This is an initial delay in milliseconds that will be added to the first timeout period. This
allows the application to have a longer initialization phase without calling
JidaWDogTrigger and still be protected by the watchdog.

dwMode
This value can either be:
JWDModeRebootPC (0)

This will cause a hard reset without shutting down Windows when the watchdog
engages.

JWDModeRestartWindows (1)
This will shut down Windows in a proper manner when the watchdog engages.

Description:

This structure is used with JidaWDogSetConfigStruct and JidaWDogGetConfigStruct.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 52 of 61

JidaPerformanceGetCurrent

Declaration

BOOL WINAPI JidaPerformanceGetCurrent(HJIDA hJida, DWORD dwType, LPDWORD
pdwSetting);

Parameters:
hJida

Board handle.
dwType

Must be 0.
pdwSetting

Pointer to location that will receive the value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the current CPU performance percentage. The value ranges from 0 to 100.

JidaPerformanceSetCurrent

Declaration

BOOL WINAPI JidaPerformanceSetCurrent(HJIDA hJida, DWORD dwType, DWORD
dwSetting);

Parameters:
hJida

Board handle.
dwType

Must be 0.
dwSetting

New value.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Sets the current CPU performance percentage. The value ranges from 0 to 100.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 53 of 61

JidaPerformanceGetPolicyCaps

Declaration

BOOL WINAPI JidaPerformanceGetPolicyCaps(HJIDA hJida, DWORD dwType, LPDWORD
pdwSetting);

Parameters:
hJida

Board handle.
dwType

Must be 0.
pdwSetting

Pointer to location that will receive the value.
JIDA_CPU_PERF_THROTTLING

system supports/utilizes CPU throttling
JIDA_CPU_PERF_FREQUENCY

system supports/utilizes CPU frequency switching
Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the current CPU performance policy capabilities. The current values can be set and
retrieved with the JidaPerformanceSetPolicy and JidaPerformanceGetPolicy
functions.

JidaPerformanceGetPolicy

Declaration

BOOL WINAPI JidaPerformanceGetPolicy(HJIDA hJida, DWORD dwType, LPDWORD
pdwSetting);

Parameters:
hJida

Board handle.
dwType

Must be 0.
pdwSetting

Pointer to location that will receive the value.
JIDA_CPU_PERF_THROTTLING

system supports/utilizes CPU throttling
JIDA_CPU_PERF_FREQUENCY

system supports/utilizes CPU frequency switching
Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Retrieves the current CPU performance policy.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 54 of 61

JidaPerformanceSetPolicy

Declaration

BOOL WINAPI JidaPerformanceSetPolicy(HJIDA hJida, DWORD dwType, DWORD
dwSetting);

Parameters:
hJida

Board handle.
dwType

Must be 0.
dwSetting

New value. See above.

Returns:
TRUE (1) on success. FALSE (0) on failure.

Description:
Sets the current CPU performance policy.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 55 of 61

JidaTemperatureCount

Declaration

DWORD WINAPI JidaTemperatureCount(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
Number of available sensors.

Description:
This function returns the number of available temperature sensors.

JidaTemperatureGetCurrent

Declaration

BOOL WINAPI JidaTemperatureGetCurrent(HJIDA hJida, DWORD dwType,
LPDWORD pdwSetting, LPDWORD pdwStatus);

Parameters:
hJida

Board handle.
dwType

Zero-based number of sensor.
pdwSetting
 Pointer to location that will receive the current value.
pdwStatus
 Pointer to location that will receive the current sensor status.

JIDA_SENSOR_ACTIVE
Sensor is operating

JIDA_SENSOR_ALARM
Sensor reports alarm condition

JIDA_SENSOR_BROKEN
Sensor circuit is broken

JIDA_SENSOR_SHORTCIRCUIT
Sensor has a short circuit

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Reads the current value of the temperature sensor. The values are measured in units of 1/1000th
degrees Celsius.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 56 of 61

JidaTemperatureGetInfo

Declaration

BOOL WINAPI JidaTemperatureGetInfo(HJIDA hJida, DWORD dwType,
PJIDATEMPERATUREINFO pInfo);

Parameters:
hJida

Board handle.
dwType

Zero-based number of sensor.
pdwSetting
 Pointer to location that will receive the sensor information.
pInfo
 Pointer to location that will receive the sensor information.

DWORD dwSize
Must be initialized by the caller with sizeof(JIDATEMPERATUREINFO).

DWORD dwType
temperature sensor type
JIDA_TEMP_CPU, JIDA_TEMP_BOX, JIDA_TEMP_ENV,
JIDA_TEMP_BOARD, JIDA_TEMP_BACKPLANE, JIDA_TEMP_CHIPSETS,
JIDA_TEMP_VIDEO, JIDA_TEMP_OTHER

DWORD dwFlags
temperature sensor capabilities flags

DWORD dwAlarm
temperature alarm mode

DWORD dwRes
temperature resolution, i.e. how exact the sensor can measure

DWORD dwMin
minimum temperature the sensor can measure

DWORD dwMax
maximum temperature the sensor can measure

DWORD dwAlarmHi
upper alarm threshold, i.e. the value up to which the temperature must rise to
generate an alarm

DWORD dwHystHi
upper alarm hysteresis, i.e. how many degrees the temperature must fall to
reset an alarm

DWORD dwAlarmLo
lower alarm threshold, i.e. the value down to which the temperature must fall to
generate an alarm

DWORD dwHystLo
lower alarm hysteresis, i.e. how many degrees the temperature must rise to
reset an alarm

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Returns the temperature information. The values are measured in units of 1/1000th degrees
Celsius.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 57 of 61

JidaFanCount

Declaration

DWORD WINAPI JidaFanCount(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
Number of available sensors.

Description:
This function returns the number of available fan sensors.

JidaFanGetCurrent

Declaration

BOOL WINAPI JidaFanGetCurrent(HJIDA hJida, DWORD dwType,
LPDWORD pdwSetting, LPDWORD pdwStatus);

Parameters:
hJida

Board handle.
dwType

Zero-based number of sensor.
pdwSetting
 Pointer to location that will receive the current value.
pdwStatus
 Pointer to location that will receive the current sensor status.

JIDA_SENSOR_ACTIVE
Sensor is operating

JIDA_SENSOR_ALARM
Sensor reports alarm condition

JIDA_SENSOR_BROKEN
Sensor circuit is broken

JIDA_SENSOR_SHORTCIRCUIT
Sensor has a short circuit

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Reads the current value of the fan speed sensor. The values are measured in RPM (revolutions
per minute).

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 58 of 61

JidaFanGetInfo

Declaration

BOOL WINAPI JidaFanGetInfo(HJIDA hJida, DWORD dwType, PJIDAFANINFO pInfo);

Parameters:
hJida

Board handle.
dwType

Zero-based number of sensor.
pdwSetting
 Pointer to location that will receive the sensor information.
pInfo
 Pointer to location that will receive the sensor information.

DWORD dwSize
Must be initialized by the caller with sizeof(JIDAFANINFO).

DWORD dwType
sensor type
JIDA_FAN_CPU, JIDA_FAN_BOX, JIDA_FAN_ENV,
JIDA_FAN_CHIPSET, JIDA_FAN_VIDEO, JIDA_FAN_OTHER

DWORD dwFlags
sensor capabilities flags

DWORD dwAlarm
fan alarm mode

DWORD dwAlarmHi
upper alarm threshold, i.e. the value up to which the fan speed must rise to
generate an alarm

DWORD dwHystHi
upper alarm hysteresis, i.e. how many RPMs the fan speed must fall to reset
the alarm

DWORD dwAlarmLo
lower alarm threshold, i.e. the value down to which the fan speed must fall to
generate an alarm

DWORD dwHystLo
lower alarm hysteresis, i.e. how many RPMs the fan speed must rise to reset
the alarm

DWORD dwOutVal
new fan speed control output value

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Returns the fan speed sensor information. The values are measured in RPM (revolutions per
minute).

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 59 of 61

JidaVoltageCount

Declaration

DWORD WINAPI JidaVoltageCount(HJIDA hJida);

Parameters:
hJida

Board handle.

Returns:
Number of available sensors.

Description:
This function returns the number of available voltage sensors.

JidaVoltageGetCurrent

Declaration

BOOL WINAPI JidaVoltageGetCurrent(HJIDA hJida, DWORD dwType,
LPDWORD pdwSetting, LPDWORD pdwStatus);

Parameters:
hJida

Board handle.
dwType

Zero-based number of sensor.
pdwSetting
 Pointer to location that will receive the current value.
pdwStatus
 Pointer to location that will receive the current sensor status.

JIDA_SENSOR_ACTIVE
Sensor is operating

JIDA_SENSOR_ALARM
Sensor reports alarm condition

JIDA_SENSOR_BROKEN
Sensor circuit is broken

JIDA_SENSOR_SHORTCIRCUIT
Sensor has a short circuit

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Reads the current value of the voltage sensor. The values are measured in units of 1/1000th
volts.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 60 of 61

JidaVoltageGetInfo

Declaration

BOOL WINAPI JidaVoltageGetInfo(HJIDA hJida, DWORD dwType, PJIDAVOLTAGEINFO
pInfo);

Parameters:
hJida

Board handle.
dwType

Zero-based number of sensor.
pdwSetting
 Pointer to location that will receive the sensor information.
pInfo
 Pointer to location that will receive the sensor information.

DWORD dwSize
Must be initialized by the caller with sizeof(JIDAVOLTAGEINFO).

DWORD dwType
voltage type
JIDA_VOLTAGE_CPU, JIDA_VOLTAGE_DC,
JIDA_VOLTAGE_DC_STANDBY, JIDA_VOLTAGE_BAT_CMOS,
JIDA_VOLTAGE_BAT_POWER, JIDA_VOLTAGE_AC,
JIDA_VOLTAGE_OTHER

DWORD dwNom
nominal voltage / 0 if unknown

DWORD dwFlags
voltage monitor capabilities flags

DWORD dwAlarm
voltage monitor alarm mode

DWORD dwRes
voltage monitor resolution, i.e. how exact the voltage can be measured

DWORD dwMin
minimum voltage that can be measured

DWORD dwMax
maximum voltage that can be measured

DWORD dwAlarmHi
upper alarm threshold, i.e. the value up to which the voltage must rise to
generate an alarm

DWORD dwHystHi
upper alarm hysteresis, i.e. how much the voltage must decrease to reset an
alarm

DWORD dwAlarmLo
lower alarm threshold, i.e. the value down to which the voltage must fall to
generate an alarm

DWORD dwHystLo
lower alarm hysteresis, i.e. how much the voltage must rise to reset an alarm

Returns:

TRUE (1) on success. FALSE (0) on failure.

Description:
Returns the voltage information. The values are measured in units of 1/1000th volts.

 Kontron JIDA32 Library API Rev. 1.9

Kontron JIDA32 Library API Copyright Kontron Embedded Modules Page: 61 of 61

Document Revision History

Filename Date Edited by Rev Alteration to preceding revision
JIDA32.DOC 01.11.98 DP Initial version!
JIDA32.DOC 11.11.98 C.Riesinger 1.0 Reformatted
JIDA32.DOC 07.06.99 DP 1.1 Updated for JIDA Win32 1.1

Moved Watchdog API to JIDA
Driver available for Win NT and Win CE

JIDA32.DOC 21.06.99 DP 1.1 CHAR to TCHAR
JIDA32.DOC 04.04.00 DP 1.2 Windows 2000
JIDA32.DOC 07.03.01 DP 1.3 Changed "JIDA Win32 API" to "JIDA32 Library API"

Added Linux and VxWorks platform
Added new boards
Added hot key LCD support

JIDA32.DOC 04.12.01 DP 1.4 Added new boards
Added Windows XP
Added VxWorks jida.o
Added jidakiss.h
Updated Linux section

JIDA32.DOC 05.12.02 DP 1.5 Changed to Kontron
JidaI2CRead/Write is implemented
Multiple I2C buses per board are implemented

JIDA32.DOC 13.06.03 DP 1.6 Added JidaVga(G/S)etBacklightEnable
Added JidaVga(G/S)etContrastEnable
Added JidaPerformance(G/S)etCurrent
Added JidaI2CType
Implemented JidaWDogGetConfigStruct
Implemented JidaIO* functions
Windows 98/ME now use WDM JIDA driver
Full support of all currently implemented JIDA32
BIOS features
Linux and VxWorks are separate packages

JIDA32.DOC 09.11.03 DP 1.7 Added JidaI2CWriteReadCombined
Added JidaIOGetDirection
Added JidaIOSetDirection
Added JidaIOGetDirectionCaps
Added JidaIOGetName (not yet implemented)

JIDA32.DOC 06.04.04 DP 1.8 Added JidaBoardGetBootErrorLog
Added JidaPerformance(G/S)etPolicy(Caps)
Added JidaTemperature*
Added JidaFan*
Added JidaVoltage*
QNX 6 version available on request

JIDA32.DOC 25.02.09 DP 1.9 Updated OS versions
Clarified I2CWriteRegister
Clarified szSerialNumber

