CC Pilot™ XS

CAN interface description

CCSYSTEMS



CAN interface description

Table of Contents

g1 i oo [UTox 1To] o D P O T T T OO T O O O O PP PP PP P OPRTPPR PP 3
LU 0T 1 P PPPPPPPPRPN 3
RETEIBNCES ...ttt et e et e oottt e e st e e e bt e e ek et e et e e a e e e e e e s 3
[ 1151 (0] O TP PP PPP RPN 3

CAN COMMUNICALION SEIVICES .....eeeeiiiiieiiiiieeettee e sttt e e sttt s e e e et e e et et e s s s e e e e as b et e e abe et e e asbe e e e s be e e e asreeenannneeennreeas 4
Summary of INErface FUNCHIONS. ........eiiiiiiee e e e e s e e e s 4
(02T @] 01T o] = TSP TP TSP TRTRPOTRPPPRPRPRPOR 4
L2 T o =T o 5
CANCIOSE ...ttt etttk eh e h bRt h Rt R ea e R e ea e h e ea et e e e bt 6
(0= T4 ST=T o o T U T TP TP PP TP PPP PPN 6
(0= T g ST=T o [0 | = T T TP PP PP PPR PPN 8
(0= 1] 2 Y= Tol =V PP PP UP PP PPPRPPPPRI 10
CANRECEIVEEX ...ttt e et oo h et e oo a bt e e e bt e e a bt e oo b b e e e ek et e e anbe e e e s nbb e e e e anbreeeaa 14
CanENADIEREMOTEFTAMIE .....ccoiiii ettt e e s b e e et e e e e abe e e e s nb e e e e asbreenn 15
CanDiSADIEREMOIEFTAIME .....coiuiiiiiieiie ettt e e bt e et e e s b e e st b et e e aabe e e e s nbeeeeasbreeen 17
CanNENUMREMOTEFTAME ......oiiiiiiii it st e s e e st et e s ssne e e e s nn e e e s nsneeenaa 18
(O T g [CT=] £ o 11 ] oL P T T T O PP P PO U PP PPRPTUPPRPRRPPN 19
(O Lol T (=TS T TSI = o o T PSPPSR 21
CaANGEIDEVICEHANTIE ...ttt h e s bt e bt sb et e bt e s b e e bt s b e e e bt e nene e 22

CONfIGUIALION COMIMON ...ttt et e e bt e e ettt e s he et e e b b et e e aa et e e e bt e e e e asb e e e e anbreeeenanes 23

Configuration (WIiNndOWS 2000/XP) ........eeeeiiiiieiiieee ittt ettt e e st a et e e e s abe et e e aa bt e e aabee e e s anne e e e et b e e e nnreeeenanes 24

Configuration (WINAOWS CE) .......uueiiiiiiiieiiiiie ettt e e ettt e e et e e s b et e e aa b et e e e b e e e e s nne e e e asbr e e e ansreeesnnes 25



CAN interface description

Introduction

Purpose

This document describes the software interface to the CAN Communication Services.

References

History

Rev
1.0
1.1

1.2

1.3

14

15

1.6

1.7

1.8
1.9
2.0

Date
98-05-25
98-06-15

98-09-10

98-12-02

2000-05-15

2000-05-23

2000-08-21

2005-03-10

2005-10-14
2006-05-14
2008-04-09

Author
Goran Nordin
Goran Nordin

Goran Nordin
Goran Nordin

Goran Nordin

Goran Nordin

Goran Nordin

Anders Sipuri

Goran Nordin
Goran Nordin
Fredrik Lans

Remarks

First preliminary version.

Function CanOpenEx added.

Added parameter bRtr to CanSend.

It is now possible to specify messages you do not want
to receive to CanReceive.

Type names changed according to coding rules
Functions CanGetDeviceHandle and
CanGetLastTimeStamp added.

Parameter pTimeStamp returned from
CanGetlLastTimeStamp changed.

Functions CanSendEx, CanReceiveEx and
CanGetStatistics added. Configuration added. Windows
NT and Windows CE specific restrictions added.
Description of parameter frameTypeSel to
CanReceiveEx corrected. Description of when
CanSendEx and CanReceiveEx sets last error to
ERROR_NOT_SUPPORTED more detailed.
Functions CanAddRemoteReply and
CanRemoveRemoteReply added.

Functions CanAddRemoteReply and
CanRemoveRemoteReply removed.

Functions CanEnableRemoteFrame,
CanDisableRemoteFrame and description for
CanEnumRemoteFrame added.

Description of configuration changed.

Description of configuration for Windows CE extended.
Revision



CAN interface description

CAN Communication Services

The CAN Communication Services enables the caller to receive messages from or send
messages to CAN interfaces. The caller may receive messages from an interface without
"stealing" messages from other users that have opened the same interface.

Summary of interface functions.

CanOpenEx
CanOpen
CanClose
CanSend
CanSendEx

CanReceive

CanReceiveEx

CanEnableRemoteFrame
CanDisableRemoteFreme
CanGetStatistics
CanGetlLastTimeStamp
CanGetDeviceHandle

CanEnumRemoteFrame

CanOpenEx

Description

Opens the CAN interface with Super User privilege.
Opens the CAN interface with Normal User privilege.
Closes the CAN interface.

Sends a message on the CAN interface.

Sends a standard or extended frame on the CAN
interface.

Receives a message from the CAN interface.

Receives a standard or extended frame from the CAN
interface.

Enables reception of a specified remote frame.
Disables reception of the specified remote frame.
Returns performance and error counters.

Returns the time stamp for the last received message.
Returns the handle to the CAN device.

Enumerates the enabled remote frames.

Opens the CAN interface with Super User privilege. Only one user in the system may have
Super User privilege for a specific interface. The caller may send messages with any CAN id.

Include files

#include "can.h"

Syntax
CanHandle CanOpenEx (

LPCTSTR pNetName

Parameters

pNetName The CAN net name, CAN1-CANN. Either an ANSI or UNICODE string,
depending on if _UNICODE and UNICODE is defined or not



CAN interface description

Return value

A handle to the opened interface or NULL if operation failed. If operation failed then
"GetLastError" can be used to get more information of the error.

If the operation failed because of that another user already has called CanOpenEx then
GetLastError will return ERROR_SHARING_VIOLATION.

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)

Example

CanOpen

Description

Opens the CAN interface with Normal User privilege. There is no restriction on the number of
users with Normal User privilege for a specific interface. The caller may only send messages
with CAN id's within the configured Normal User range.

Include files

#include "can.h"

Syntax
CanHandle CanOpen (

LPCTSTR pNetName

Parameters

pNetName The CAN net name, CAN1-CANN. Either an ANSI or UNICODE string,
depending on if _UNICODE and UNICODE is defined or not

Return value

A handle to the opened interface or NULL if operation failed. If operation failed then
"GetlLastError" can be used to get more information of the error.

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)



CAN interface description

Example

See example of CanSend or CanReceive.

CanClose

Description

Closes the CAN interface. Disables the caller from receiving messages from or sending
messages to the CAN interface.

Include files

#include "can.h"

Syntax
BOOL CanClose (

CanHandle hInterface

Parameters

hinterface A handle to an opened interface.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

Restrictions (Windows NT)

Restrictions (Windows CE)

Example

See example of CanSend or CanReceive.

CanSend

Description

Sends a message on the CAN interface.



CAN interface description

Include files

#include "can.h"

Syntax

BOOL CanSend (

CanHandle hInterface,
CanMsg *pCanMsg,
DWORD dataLength,

BOOL bRtr
)
Parameters
hinterface A handle to an opened interface.
pCanMsg A pointer to the message to send.
The structure of the message is as follows:
typedef struct _CanMsg {
CanMsgld id;
UCHAR data[CAN_MAX_MSG_LENGTH];
} CanMsg;
id is the CAN message identifier.
data is the data bytes in the CAN message.
CAN_MAX_MSG_LENGTH is equal to 8.
datalLength The number of data bytes to send.
bRtr Should be set to TRUE if message is to be sent as a remote frame.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

If the operation failed because the interface was opened with CanOpen and the CAN id of the
message is outside the Normal User range then GetLastError will return
ERROR_ACCESS_DENIED.

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)

Example

This example shows how to send a CAN message on the first interface, i e “CAN1”. Of course
opening and closing of an interface should be performed at start-up and termination and not
before every sending as in the example.



CAN interface description

CanHandle hInterface;
CanMsg myCanMsg = {1, {10, 20, 30, 40, 50, 60, 70, 80}};

if ((hInterface = CanOpen (TEXT("CAN1"))) == NULL)
{
printf (
"!TERROR, %lu when calling \"CanOpen\"\n",
GetlLastError());

}

if (!CanSend(hInterface, &myCanMsg, 8 , FALSE))
{

printf (
"I 1ERROR, %lu when calling \"CanSend\"\n",
GetLastError()):;
}
if (!CanClose(hInterface))
{
printf (
"1 1ERROR, %lu when calling \"CanClose\"\n",
GetLastError());

CanSendEx

Description

Sends a standard or extended frame on the CAN interface.

Include files

#include "can.h"

Syntax
BOOL CanSendEx (

CanHandle hInterface,
CanMsg *pCanMsg,

DWORD dataLength,

BOOL DbRtr,
CanFrameType frameType

Parameters

hinterface See "CanSend"
pCanMsg See "CanSend"
datalLength See "CanSend"
bRtr See "CanSend"
frameType Should be set to:

CAN_FRAME_STANDARD if message is to be sent as a standard frame



CAN interface description

CAN_FRAME_EXTENDED if message is to be sent as an extended
frame

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

If the operation failed because the interface was opened with CanOpen and the CAN id of the
message is outside the Normal User range then GetLastError will return
ERROR_ACCESS_DENIED. If the operation failed because the frame type selected by
frameType is not supported by the CAN controller or not configured for the driver then
"GetLastError" will return ERROR_NOT_SUPPORTED.

Restrictions (Windows 2000/XP)

Sending extended frames requires that the CAN controller supports extended frames, which is
the case for Intel 82527 but not for Philips 82200.

Restrictions (Windows CE)
Same as the "Restrictions (Windows 2000/XP)"

Example

This example shows how to send a standard and extended CAN frame on the first interface, i e
“CAN1”. Of course opening and closing of an interface should be performed at start-up and
termination and not before every sending as in the example.

CanHandle hInterface;
CanMsg myCanMsgStd = {1, {10, 20, 30, 40, 50, 60, 70, 80}};
CanMsg myCanMsgExt = {0x800, {10, 20, 30, 40, 50, 60, 70, 80}};

if (hInterface = CanOpen (TEXT ("CAN1")) == NULL)
{
printf (
"I IERROR, %lu when calling \"CanOpen\"\n",
GetLastError());

}

if (!CanSendEx (
hInterface,
&myCanMsgStd,
8,
FALSE,
CAN_FRAME_STANDARD))

printf (
"I IERROR, %lu when calling \"CanSendEx\"\n",
GetLastError());

}

if (!CanSendEx (
hInterface,
&myCanMsgExt,
8,
FALSE,
CAN FRAME EXTENDED))

printf (



CAN interface description

"1 1ERROR, %lu when calling \"CanSendEx\"\n",
GetlLastError());

if (!CanClose (hInterface))

{

printf (
"I IERROR, %lu when calling \"CanClose\"\n",
GetLastError()):;
}
CanRecelve
Description

Receives a message from the CAN interface.

The caller may receive messages from the interface without "stealing" messages from other
users that have called CanOpen.

Include files

#include "can.h"

Syntax

BOOL CanReceive (

CanHandle hInterface,
CanMsg *pCanMsg,
LPDWORD pDatalength,
CanMsgId *pCanMsgSel,
DWORD milliseconds

Parameters
hinterface

pCanMsg

pDatalLength
pCanMsgSel

A handle to an opened interface.

A pointer to the buffer where the received message should be stored.
The structure of the message is as follows:

typedef struct _CanMsg {

CanMsgld id;

UCHAR data[CAN_MAX_MSG_LENGTH];
} CanMsg;

id is the CAN message identifier.
data is the data bytes in the CAN message.
CAN_MAX_MSG_LENGTH is equal to 8.

A pointer to the number of data bytes in the received message.

A pointer to an array specifying which messages that should be
received. The first element, (pCanMsgSel[0]), should specify the number
of CAN message ID's in the array

If pCanMsgSel[0] is positive then any of IDs in the array will be received.
If pCanMsgSel[0] is negative then any of IDs that is not in the array will
be received.

If any message is requested then NULL should be supplied.



CAN interface description

milliseconds Specifies the time-out interval, in milliseconds. The function returns if the
interval elapses, even if no messages are received. If milliseconds is
zero, the function checks if there are any messages and returns
immediately. If milliseconds is INFINITE, the function does not return
until a message is received.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

If the operation failed because of that the time-out interval expired then GetLastError will return
ERROR_TIMEOUT.

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)

Example 1

This example shows how to receive any message with an infinite time out period on the first
interface, i e “CAN1”. Of course opening and closing of an interface should be performed at
start-up and termination and not before every reception as in the examples.

DWORD datalength;

DWORD 1i;

CanHandle hInterface;
CanMsg myCanMsg;
CanTimeStamp timeStamp;

if ((hInterface = CanOpen (TEXT ("CAN1"))) == NULL)
{
printf (
"I IERROR, %lu when calling \"CanOpen\"\n",
GetLastError());

}

if (CanReceive (hInterface,
&myCanMsg,
&datalength,
NULL,
INFINITE))

CanGetLastTimeStamp (hInterface, &timeStamp) ;
printf ("CAN message received\n");
printf ("\tTime stamp (ns): %lu%lu\n",
timeStamp.high,
timeStamp.low) ;
printf ("\tId: %$#x\n", myCanMsg.id) ;
printf ("\tData:");
for (i = 0; i < datalLength; i++)
{
printf (" $#2x", myCanMsg.datali]):;



CAN interface description

printf (
"I IERROR, %lu when calling \"CanReceive\"\n",
GetlLastError());

}

if (!CanClose (hInterface))
{
printf (
"I 1ERROR, %lu when calling \"CanClose\"\n",
GetLastError());



CAN interface description

Example 2

This example shows how to receive messages with id 3 and 5 with a time out period of 500 ms
on the first interface, i e “CAN1".

DWORD lastError;

DWORD datalength;

DWORD 1;

CanHandle hInterface;

CanMsg myCanMsg;

CanMsgId CanMsgSel[] = {2, 3, 5};

if ((hInterface = CanOpen (TEXT("CAN1"))) == NULL)
{
printf (
"!TERROR, %lu when calling \"CanOpen\"\n",
GetlLastError());

}

if (CanReceive (
hInterface,
&myCanMsg,
&datalength,
CanMsgSel,
500))

printf ("CAN message received\n");
printf ("\tId: %$#x\n", myCanMsg.id);
printf ("\tData:");
for (i = 0; i < datalength; i++)
{
printf (" $#2x", myCanMsg.datali]):;
}
printf ("\n");
}
else

{

lastError = GetLastError();

if (lastError == ERROR TIMEOUT)
{

printf ("Time out occurred when receiving CAN messages\n");

}

else
{
printf (
"I IERROR, %lu when calling \"CanReceive\"\n",
GetLastError()):;

}

if (!CanClose (hInterface))
{
printf (
"!'ERROR, %lu when calling \"CanClose\"\n",
GetLastError());



CAN interface description

CanReceiveEx

Description

Receives a standard or extended frame from the CAN interface. The caller may receive
messages from the interface without "stealing" messages from other users that have called

CanOpen.

Include files

#include "can.h"

Syntax

BOOL CanReceiveEx (

CanHandle hInterface,
CanMsg *pCanMsg,

LPDWORD pDatalLength,
CanMsgId *pCanMsgSel,
CanFrameType frameTypeSel,
CanFrameType *pFrameType,
DWORD milliseconds

)

Parameters
hinterface
pCanMsg
pDatalLength
pCanMsgSel
frameTypeSel

pFrameType

milliseconds

Return value

See "CanReceive”
See "CanReceive”
See "CanReceive"
See "CanReceive"

Specifies which frame types that should be received.

If frameTypeSel is set to CAN_FRAME_STANDARD then only standard
frames matching pCanMsgSel is received.

If frameTypeSel is set to CAN_FRAME_EXTENDED then only extended
frames matching pCanMsgSel is received.

If frameTypeSel is set CAN_FRAME_STANDARD |
CAN_FRAME_EXTENDED then either standard or extended frames
matching pCanMsgSel is received.

A pointer to the frame type of the received message.
CAN_FRAME_STANDARD or CAN_FRAME_EXTENDED if a standard
or an extended frame is received.

CAN_FRAME_REMOTE if the frame is remote.

See "CanReceive".

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

If the operation failed because of that the time-out interval expired then GetLastError will return

ERROR_TIMEOQOUT.

If the operation failed because the frame type selected by frameTypeSel is not supported by the
CAN controller or not configured for the driver then "GetLastError" will return
ERROR_NOT_SUPPORTED.

Restrictions (Windows 2000/XP)



CAN interface description

Receiving extended frames requires that the CAN controller supports extended frames, which is
the case for Intel 82527 but not for Philips 82200.

Restrictions (Windows CE)
Same as the "Restrictions (Windows 2000/XP)"

Example

This example shows how to receive any message of either standard or extended frame type
with an infinite time out period on the first interface, i e “CAN1”. Of course opening and closing
of an interface should be performed at start-up and termination and not before every reception
as in the examples.

DWORD datalLength;
CanHandle hlInterface;
CanMsg myCanMsg;
CanFrameType frameType;

if ((hInterface = CanOpen (TEXT ("CAN1"))) == NULL)
{
printf (
"!'ERROR, %lu when calling \"CanOpen\"\n",
GetLastError());
}

if (!CanReceiveEx (
hInterface,
&myCanMsg,
&datalength,
NULL,
CAN FRAME STANDARD | CAN FRAME EXTENDED,
&frameType,
INFINITE))

printf (
"I 1ERROR, %lu when calling \"CanReceiveEx\"\n",
GetLastError());
}

if (!CanClose (hInterface))
{

printf (
"I !ERROR, %lu when calling \"CanClose\"\n",
GetLastError());

CanEnableRemoteFrame

Description

Enables reception of the specified remote frame. This function is only needed/supported by
hardware that uses 82527 alike message objects. For other hardware this function will fail.

Include files

#include "can.h"



CAN interface description

Syntax
BOOL CanEnableRemoteFrame (

CanHandle hInterface,
CanMsgId id

Parameters
hinterface A handle to an opened interface.
id id is the CAN message identifier of the remote frame to enable.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

If the operation failed because the interface was opened with CanOpen and the CAN id of the
message is outside the Normal User range then GetLastError will return
ERROR_ACCESS_DENIED.

If the operation failed because there is no more room for more remote replies then GetLastError
will return ERROR_NO_MORE_ITEMS, see restrictions for the Intel 82527 Controller. If the
operation failed because the hardware doesn't need/support the function then GetLastError will
return ERROR_NOT_SUPPORTED.

Restrictions (Windows 2000/XP)
The restrictions for remote frame handling are hardware dependent.
For the Intel 82527 Controller:

It is not possible to enable extended remote frames if reception of both standard and extended
frames is enabled, see configuration of Mode.

The number of remote replies is limited to 13.

Restrictions (Windows CE)
Same as the "Restrictions (Windows 2000/XP)".

Example
This example shows how to enable a reply to a remote frame with id 1.

CanHandle hInterface;

CanMsgIld myRemoteFrameId = 1;
if ((hInterface = CanOpen (TEXT("CAN1"))) == NULL)
{
printf (
"I IERROR, %lu when calling \"CanOpen\"\n",
GetLastError());

}

if (!CanEnableRemoteFrame (hInterface, myRemoteFramelId))

{



CAN interface description

printf (
"I IERROR, %lu when calling \"CanEnableRemoteFrame\"\n",
GetlLastError());

if (!CanDisableRemoteFrame (hInterface, myRemoteFrameld))

{
printf (
"!I''ERROR, %1lu when calling \"CanRemoveRemoteReply\"\n",
GetLastError());
}

if (!CanClose (hInterface))

{
printf (
"1 1ERROR, %lu when calling \"CanClose\"\n",
GetLastError()):;

CanDisableRemoteFrame

Description

Disables reception of the specified remote frame. This function is only needed/supported by
hardware that uses 82527 alike message objects. For other hardware this function will fail.

Include files

#include "can.h"

Syntax

BOOL CanDisableRemoteFrame (

CanHandle hInterface,
CanMsgId id

Parameters
hinterface A handle to an opened interface.
id The CAN message identifier of the remote frame to disable.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

If the operation failed because the remote frame reply specified by id has never been added,
then GetLastError will return ERROR_NOT_FOUND. . If the operation failed because the
hardware doesn't need/support the function then GetLastError will return
ERROR_NOT_SUPPORTED.



CAN interface description

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)

Example

See example of CanEnableRemoteFrame.

CanEnumRemoteFrame

Description

Enumerates the enabled remote frames. This function is only needed or supported by hardware
that uses 82527 alike message objects. For other hardware this function will fail.

Include files

#include "can.h"

Syntax
BOOL CanEnumRemoteFrame (

CanHandle hInterface,
ULONG index,

CanMsgId *pId,
CanFrameType *pFrameType

)

Parameters

hinterface A handle to the opened interface.

index Specifies the index of the subkey to retrieve. This parameter should be
zero for the first call to the CanEnumRemoteReply function and then, as
long as ERROR_SUCCESS is returned, incremented for subsequent
calls until ERROR_NO_MORE_ITEMS are returned.

pCanMsgld A pointer to the message id of the remote frame .

pFrameType A pointer to the frame type of the remote frame.

Return value

ERROR_SUCCESS or some error code. If operation failed because there are no more remote
frame replies then ERROR_NO_MORE_ITEMS is returned.

Restrictions (Windows 2000/XP)



CAN interface description

Restrictions (Windows CE)

Example

CanHandle hInterface;
DWORD lastError;

ULONG i;

CanMsg canMsg;
CanFrameType frameType;

// Other code... (need hlInterface for example)
i =20;
while ((lastError = CanEnumRemoteFrame (
hInterface,
i,
&canMsg.id,
&frameType)) == ERROR_ SUCCESS)

// Doing stuff...

i++;

CanGetStatistics

Description

Returns performance and error counters.

Include files

#include "can.h"

Syntax
BOOL CanGetStatistics(

CanHandle hInterface,
CanStatistics *pStatistics

Parameters
hinterface A handle to an opened interface.
pStatistics A pointer to the performance and error counters.

The structure of the performance and error counters is as follows

typedef struct _CanStatistics {
ULONG rxMsgCnitr;
ULONG rxDataCntr,;
ULONG txMsgChnitr;
ULONG txDataCntr;
ULONG hwOvrnCntr;



CAN interface description

ULONG busWarnCntr;
ULONG busOffCntr;
ULONG appOvrnCntr,
ULONG rxFifoOvrnCntr;
ULONG rxFifoMax;
ULONG txFailCntr;

} CanStatistics;

rxMsgChntr is the number CAN messages received so far.

rxDataCntr is the number of data bytes received so far.

txMsgChntr is the number CAN messages transmitted so far.

txDataCntr is the number of data bytes transmitted so far.

hwOvrnCntr is the number of times that the CAN controller has detected
a receive overrun.

busWarnCntr is the number of times that the CAN controller has
experienced a bus warning condition.

busOffCntr is the number of times that the CAN controller has entered
the bus off state.

appOvrnCntr is the maximum number of overruns that have occurred for
a client application. If this occurs then the client application needs to be
optimized.

rxFifoOvrnCntr is the number of times that a overrun has occurred in the
type-ahead receive fifo. If this occurs then the size of the type-ahead
receive fifo needs to be increased, see configuration value "RxFifoSize".
rxFifoMax is the maximum number of messages that the type-ahead
receive fifo have contained.

txFailCntr is the number of times that a transmit operation has failed.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError” can be
used to get more information of the error.

Restrictions (Windows 2000/XP)

Element txFailCntr is not implemented

Restrictions (Windows CE)

Element rxFifoOvrnCntr and rxFifoMax are not implemented.

Example

This example shows how the statistics are retrieved.

CanHandle hInterface;
CanStatistics statistics;

if ((hInterface = CanOpen (TEXT("CAN1"))) == NULL)
{
printf (
"I IERROR, %lu when calling \"CanOpen\"\n",
GetlLastError());

}

if (!CanGetStatistics (hInterface, &statistics))
{
printf (
"I IERROR, %lu when calling \"CanGetStatistics\"\n",



CAN interface description

GetLastError()):;
}

if (!CanClose (hInterface))
{

printf (
"I IERROR, %lu when calling \"CanClose\"\n",
GetLastError()):;

CanGetLastTimeStamp

Description

Returns the time stamp for the last sent or received message.

Include files

#include "can.h"

Syntax
BOOL CanGetLastTimeStamp (

CanHandle hInterface,
CanTimeStamp *pTimeStamp

)

Parameters
hinterface A handle to an opened interface.
pTimeStamp A pointer to the time stamp.

The structure of the time stamp is as follows

typedef struct _CanTimeStamp {
ULONG low;
ULONG high;

} CanTimeStamp;

low is the lower 32 bits of the time stamp in 100-nanoseconds.
high is the upper 32 bits of the time stamp in 100-nanoseconds.

Return value

TRUE if operation succeeded otherwise FALSE. If operation failed then "GetLastError" can be
used to get more information of the error.

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)

Example



CAN interface description

See example of CanReceive.

CanGetDeviceHandle

Description

Returns the handle to the CAN device. The handle can be used in DeviceloControl calls

Include files

#include "can.h"

Syntax

HANDLE CanGetDeviceHandle (
CanHandle hInterface
)

Parameters
hinterface A handle to an opened interface.
Return value

A handle to the CAN device or INVALID_HANDLE_VALUE if operation failed. If operation failed
then "GetlLastError" can be used to get more information of the error.

Restrictions (Windows 2000/XP)

Restrictions (Windows CE)

Example



CAN interface description

Configuration common

Summary of common configuration values

Name: *

Type:

Description:

BaudRate

String

Can either be set to an explicit baud-rate or to initialization values of
the CAN controller's registers. The latter is hardware dependent.
For example for an explicit baud-rate of 125 kBit/s the field should
be set to "125000".

For an 82527 Controller it can also be set to:
"DSC=<value>, BTRO=<value>, BTR1=< value >".

BusOffRecoverDelay

DWORD

Should be set to the delay in milliseconds to wait before an attempt
should be made to recover from a bus off state. If this field is
omitted then the delay is set to 0.

EnableTimeStamp

DWORD

Should be set to "1" if incoming messages should be time stamped.
If this field is omitted then no time stamping is made.

Mode

DWORD

Should be set to:

"Standard" if standard frames should be sent/received.

"Extended" if extended frames should be sent/received.

"Standard, Extended" if both standard and extended frames should
be sent/received.

If this field is omitted then only standard frames are sent/received.

RxFifoSize

DWORD

Should be set to the size of the type-ahead receive fifo. If this field
is omitted then the size is set to 8.

TxUserldRange

String

Should be set to the normal user range. For example if a normal
user is allowed to send CAN messages greater than 0, then the
field should be set to "1-0xffffffff".

If this field is omitted then a normal user is allowed to send any

messages.

! Values in bold are required.




CAN interface description

Configuration (Windows 2000/XP)

The configuration parameters are stored in the registry key:
HKEY_LOCAL_MACHINE\SYSTEM\System\CurrentControlSet\Services\<Driver
name>\Parameters\Device<0-n>

Driver name is a string that varies depending on the hardware. Examples are:
Can8252CCS, Can82200IpME, Can82527IpME.

The device number, 0-n, is a number that identifies the interface. Configuration for the interface
"CANL" is stored in DeviceO, configuration for the interface "CAN2" is stored in Devicel and so
on.

Summary of Windows 2000/XP configuration values

Name: Type: Description:

RxProcPrio DWORD | Should be set to:
0x00000040 if the priority for the CAN receive process should be
low.

0x00004000 if the priority for the CAN receive process should be
below normal.

0x00000020 if the priority for the CAN receive process should be
normal.

0x00008000 if the priority for the CAN receive process should be
above normal.

0x00000080 if the priority for the CAN receive process should be
high.

0x00000100 if the priority for the CAN receive process should be
realtime.

If this field is omitted then the priority for the CAN receive process is
set to normal.




CAN interface description

Configuration (Windows CE)

For the ISA/plain driver the configuration parameters are stored in the registry key:
HKEY_LOCAL_MACHINE\SYSTEM\System Drivers\Builtin\Can for the first CAN device and
HKEY_LOCAL_MACHINE\SYSTEM\System Drivers\Builtin\Can<2-n> for the following CAN
devices.

For the PCI driver the configuration parameters are stored in the registry key:
HKEY_LOCAL_MACHINE\Drivers\Builtin\PCI\Instance\CANMULTI1\CAN1 for the first CAN
device and HKEY_LOCAL_MACHINE\Drivers\Builtin\PCN\Instance\CANMULTI1\CAN2 for the
second CAN device.

Summary of Windows CE configuration values

Name:” Type: Description:

Prefix String The prefix of the device hame.

Index DWORD | The device number.
If Prefix is “CAN” and index is 1 then the device can be accessed
via the name “CAN1.”

RxBufferSize DWORD | Should be set to the size of the receive buffer. If this field is omitted
then the size is set to 256.

TxFailTimeout DWORD | Should be set to the timeout in milliseconds to wait before a
pending transmission should be considered to have failed.
If this field is omitted then the timeout is set to 5000.

% Values in bold are required



