
 
 
 
 

 
CCP XS GPS Library CC Systems AB 
 
 
 Date: 051031  
 Rev: 1.0 
 
 

 

CC Systems AB      
Alfta Industricenter Fyrisborgsgatan 5 Stansargränd 2 info@cc-systems.se  Page 1 of 9 
SE 822 22  Alfta SE 754 50  Uppsala SE 721 30  Västerås  
Tel. +46 271 193 80 +46 18 65 72 00 +46 21 40 32 00 www.cc-systems.com  
Fax +46 271 193 89 +46 18 12 38 85 +46 21 40 32 10 

 

 
 

GPS Library for CCP XS 
 
 

Contents 
1 Introduction 1 

1.1 Purpose 1 
1.2 References 1 
1.3 Revision history 2 

2 Background and principles 2 

3 Installation 2 

4 Using the GPS library 3 

5 Functions 4 
5.1 GPS_Init 4 

6 Using a semaphore 4 

7 Code example 4 

8 GPS data types 5 
8.1 GPS_DATA type 5 
8.2 GPS_GGA type 6 
8.3 GPS_GSA type 7 
8.4 GPS_GSV type 8 
8.5 GPS_RMC type 8 

 

1 Introduction 

1.1 Purpose 
The purpose of this document is to describe the CoDeSys GPS library which enables the user to 
receive GPS data in a CoDeSys PLC program.   

1.2 References 
http://www.nmea.org/ 
 
 
 
 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 2 (9) 

1.3 Revision history 
 
Rev Date Author Comments 
1.0 2005-10-30 Fredrik 

Löwenhielm, CCS 
Initial version 

    
    

 

2 Background and principles 
 
The PLC library described in this document enables the user to read GPS data in a CoDeSys  PLC 
program if a CCP XS is used as target hardware.  The CCP XS is equipped with a GPS module that 
communicates by the NMEA standard.  Therefore, the GPS data/variables supplied in the GPS library 
are very NMEA oriented.  Knowledge about the NMEA standard will help understanding the GPS data 
received.  Information about the NMEA standard can be found and downloaded on the NMEA web site 
http://www.nmea.org/. 
 
The library will give the user one function to initialise the library and a global variable to read GPS data 
from.  The GPS data is updated every time a NMEA message is received from the GPS unit in CCP 
XS.  The NMEA messages are sent once every second.   

3 Installation 
In order to work, the GPS library needs to have proper GPS drivers installed on the target hardware.  
The GPS driver dll used by the target runtime is called GPS.dll.  This file has to be located in the same 
directory as the runtime executable.  In addition, the GPS dll has to be registered in order to be loaded 
by the runtime.  This is done by modifying the runtime configuration file rts3s.cfg also located in the 
runtime directory.  Below are instructions for installing the GPS driver. 
 

1. Locate your runtime directory on the target file system.  The path is usually \SoftPLC\.  If there 
is no such directory, search for the file PLCCEARM.exe.  The directory where you find the file 
is your runtime directory.   

 
2. Copy the GPS.dll file to the runtime directory.  If the file is already there, your GPS driver is 

already installed and you can skip the rest of this section.   
 

3. Open the rts3s.cfg file in a text editor.  It should look something like this: 
 
[IODRIVERLIST]  
MODULE0=CCPXS 
INITFCT0=IODrvInit 
MODULE1=3SCanFrame 
INITFCT1=IODrvInit 
[PLC] 
SETTINGS_FROM_CFG=Yes 
USE SYSINTR_TIMING AS TICK=Yes 
Files= 
BootMode=Run 
 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 3 (9) 

Now, insert these two lines in the IO driver list: 
 
MODULE2=GPS 
INITFCT2=IODrvInit 
 
If there are more than two drivers present in the IO driver list, just increase the module 
number.  Your file should now look something like this: 
 
[IODRIVERLIST]  
MODULE0=CCPXS 
INITFCT0=IODrvInit 
MODULE1=3SCanFrame 
INITFCT1=IODrvInit 
MODULE2=GPS 
INITFCT2=IODrvInit 
[PLC] 
SETTINGS_FROM_CFG=Yes 
USE SYSINTR_TIMING AS TICK=Yes 
Files= 
BootMode=Run 

 
4. Now you can check if your runtime loads the GPS dll.  If your runtime is already started, shut it 

down.  Then, start it by double clicking on the file PLCCEARM.exe.  Login to your PLC from 
CoDeSys.  Go to the ‘resources’ tab and choose the PLC Browser.  Enter ‘rtsinfo’ in the 
command line prompt.  In the information you receive from the PLC, the loading of the GPS 
driver should be present.  If not, check that you have followed the steps above correctly. 

 
5. Now, place the library files GPS_XS.lib and GPS_DRV.lib in your CCP XS target library 

directory in CoDeSys.  Your library directory can be located by starting CoDeSys, creating a 
new project with CCP XS as target.  Then, open the Project->Options dialog.  Choose 
‘Directories’.  There, you can see the library paths used by CoDeSys.   

 
6. Now you are ready to use the GPS library. 

 
 
 
 

4 Using the GPS library 
The following section will describe how you create a project where you use the GPS library. 
 

1. Create a new project in CoDeSys.  Choose the proper target (CCP XS). 
 
2. Go the Resources tab.  Choose Library manager.  

 
3. Choose Insert in the main menu.  Choose the file GPS_XS.lib.  The GPS_DRV.lib will 

automatically be loaded too. 
 
4. Choose Insert again.  Choose the file SysLibSem.lib.  This library should already be installed 

with your CCP XS target installation.   
 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 4 (9) 

5. In your program code call the function GPS_Init().  The function is described further down in 
this document.  GPS_Init() has been added by the GPS_XS library.  It should not cause any 
trouble if the function is called more than one time, but it is recommended that the function is 
called once in the PLC program.  The GPS data will not be valid before this function is called.  

 
6. After the GPS_Init() function has been called the GPS data is readable in the global variable 

“gpsData” which has been added by the GPS_XS library.  The gpsData variable is an instance 
of the type GPS_DATA.  The GPS_DATA type is described in detail in a later chapter.  Note 
that it is recommended that the function SysSemEnter and SysSemLeave is called when 
reading the gpsData variable.  This is described in the section “Using semaphores”. 

 

5 Functions  
 

5.1 GPS_Init 
Declaration of the GPS_Init function: 
 
FUNCTION GPS_Init : DWORD 
VAR_INPUT 
END_VAR 
VAR 
END_VAR 
 
The GPS_Init function has no input parameters.  If initialisation of the GPS module succeeds it returns 
a handle to a semaphore which can be used for safe reading of the variable gpsData.  If initialisation 
fails the function will return zero. 
 

6 Using a semaphore 
In the runtime, a thread is created that updates the gpsData variable.  In order to be sure that the PLC 
program does not get data that currently is being updated by the thread, a semaphore can be used.  If 
a semaphore is not used it is theoretically possible that some data will contain erroneous information.  
This should not happen with data of the most common types, like DWORD, WORD, BYTE etc.  
However, when the GPS thread is updating strings, it is possible that the PLC program reads from the 
string before it is completely updated.  In the section below there are code examples of how to use a 
semaphore.   
 

7 Code example 
This section gives a example of code for using the GPS library.  In order to use the code the libraries 
GPS_XS.lib and the SysLibSem.lib has to be added to the project as described in previous sections. 
 
(* Variable declaration*) 
VAR 
 b_init: BOOL := FALSE; 
 hSem: DWORD; 
 latitude: DWORD; 
 longitude: DWORD; 
END_VAR 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 5 (9) 

 
(*First loop, call the GPS_Init() function.  Save semaphore handle*) 
IF b_init = FALSE THEN 
         hSem := GPS_Init(); 
         b_init := TRUE; 
END_IF 
 
(*Read the wanted variables from gpsData, use the semaphore*) 
SysSemEnter(hSem); 
latitude := gpsData.gps_gga.latitude; 
longitude := gpsData.gps_gga.longitude; 
SysSemLeave(hSem);  (*Now the gpsData has been read, and we signal this to the semaphore*) 
 
 
In the code example above it is actually not necessary to use the semaphore.  The reason for this is 
that both the “gpsData.gps_gga.latitude” and the “gpsData.gps_gga.longitude” variables are of type 
DWORD.  This means that they will be updated during one single operation by the CPU.  However, if 
the semaphore is not used it is possible that one of the variables is newly updated and the other has 
an older value.    
 

8 GPS data types 
After you have completed the steps in the previous sections you are ready to start using the PLC data 
in your PLC program.  This section describes the data types of the variables contained in the gpsData 
variable.  As mentioned earlier in this document, the data types are very NMEA oriented and therefore 
it is recommended that the reader have some knowledge about the NMEA standard and the NMEA 
messages. 
 

8.1 GPS_DATA type 
The only variable that is added by the GPS library is gpsData which is of type GPS_DATA. 
 
This is the declaration of GPS_DATA: 
 
TYPE GPS_DATA : 
STRUCT 
 gps_gga:GPS_GGA; 
 gps_gsa:GPS_GSA; 
 gps_gsv:GPS_GSV; 
 gps_rmc:GPS_RMC; 
END_STRUCT 
END_TYPE 
 
The four variables contained in the GPS_DATA type relate to the NMEA messages: 
 

• GGA - Global Positioning System Fix Data 
• GSA  - DOP and Active Satellites 
• GSV – Satellites in view 
• RMC – Recommended Minimum Specific GNSS Data 

 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 6 (9) 

The NMEA messages mentioned above are the messages that the GPS driver receives from the GPS 
module in the CCP XS.  The variables gps_gga, gps_gsa, gps_gsv and gps_rmc are updated every 
time the corresponding NMEA message is received by the driver.  The data is updated approximately 
once every second.  The GSV message actually consists of several messages depending on how 
many satellites the GPS unit have in its view.  Therefore the GSV message counter can tick faster 
than the other message counters.   
 

8.2 GPS_GGA type 
Below is the declaration of the GPS_GGA data type: 
 
TYPE GPS_GGA : 
STRUCT 
 utc_time:STRING(20); 
 latitude :DWORD; 
 northSouth : STRING(1); 
 longitude : DWORD; 
 eastWest : STRING(1); 
 fixValid : USINT; 
 numberOfSatellitesUsed : UINT; 
 horizontalDilutionOfPres :REAL; 
 altitude : REAL; 
 diffWGS84ref : REAL; 
 numberOfReceivedMsgs:DWORD; 
END_STRUCT 
END_TYPE 
 
 
Below is a description of the variables: 
 
utc_time – This variable contains the UTC time as a string in the format “hhmmss.dd” where hh is 
hours, mm is minutes, ss is seconds, and dd is the decimal part of seconds. 
 
latitude -  This is the latitude as a DWORD.  The format is xxmmdddd where xx is degrees, mm is 
minutes, and dddd is the decimal part of minutes.  In the NMEA message this value is supplied as a 
decimal value xxmm.dddd.  The value received is multiplied by 10,000 and inserted in the latitude 
variable. 
 
northSouth – This is the latitude north/south indicator as a string.  The possible values are ‘N’ (north) 
or ‘S’ (south). 
 
longitude – This is the longitude as a DWORD.  The format is yyymmdddd where yyy is degrees, mm 
is minutes, and dddd is the decimal part of minutes.  In the NMEA message this value is supplied as a 
decimal value yyymm.dddd.  The value received is multiplied by 10,000 and inserted in the longitude 
variable. 
 
eastWest – This is the east/west indicator as a string. The possible values are ‘E’ (east) or ‘W’ (west). 
 
fixValid – This variable tells if the fix is valid or not.  Possible values are 1 (valid) or 0 (not valid).  If the 
fix is not valid, this means that the GPS receiver does not have enough signals from the satellites in 
order to calculate a fix. 
 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 7 (9) 

numberOfSatellitesUsed – This is the number of satellites used when calculating the current fix.  
Maximum number of satellites are 12 for the GPS receiver. 
 
horizontalDilutionOfPres – This is the precision of the horizontal dilution.  The lower this value is, the 
better.  Generally < 2.0 is good. 
 
altitude – This is the mean-sea-level of the GPS antenna given in meters. 
 
 diffWGS84ref – The difference between the WGS-84 reference ellipsoid surface and the mean-sea-
level altitude. 
 
numberOfReceivedMsgs – The number of GGA messages that has been received since the 
GPS_Init() function was called for the first time.  The value is reset when the runtime is shut down. 
 
 

8.3 GPS_GSA type 
Below is the declaration of the GPS_GSA data type: 
 
TYPE GPS_GSA : 
STRUCT 
 mode1:STRING(1); 
 mode2:USINT; 
 satelliteIDs : ARRAY[1..12] OF USINT; 
 PDOP:REAL; 
 HDOP:REAL; 
 VDOP:REAL; 
 numberOfReceivedMsgs:DWORD; 
 
END_STRUCT 
END_TYPE 
 
Below is a description of the variables: 
 
mode1 – A string that can contain either ‘M’ or ‘A’.  ‘M’ means that the GPS unit is forced to operate in 
either 2D or 3D.  ‘A’ means that the GPS unit automatically switch between 2D and 3D.   
  
mode2 – The values 1,2 and 3 are possible.  1 means that fix is not available.  2 means that the GPS 
is in 2D mode.  3 means that the GPS is in 3D mode. 
 
satelliteIDs – This is an array of 12 bytes that contains the PRN numbers of the satellites currently 
used by the GPS.  If for example 5 satellites are used by the GPS, the first 5 bytes will contain the 
satellites PRN numbers, and the rest of the array will contain zeros. 
 
PDOP – Position Dilution of Precision.  A small value means good precision. 
 
HDOP – Horizonal Dilution of Precision.  A small value means good precision.   
 
VDOP – Vertical Dilution of Precision.  A small value means good precision. 
 
numberOfReceivedMsgs – The number of GSA messages that has been received since the 
GPS_Init() function was called for the first time.  The value is reset when the runtime is shut down. 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 8 (9) 

 
 
 

8.4 GPS_GSV type 
Below is the declaration of the GPS_GSV data type: 
 
TYPE GPS_GSV : 
STRUCT 
 totalSatellitesInView : UINT; 
 satelliteIds : ARRAY[1..36] OF USINT; 
 satelliteElevations : ARRAY[1..36] OF USINT; 
 satelliteAzimuths : ARRAY[1..36] OF UINT; 
 satelliteSNRs : ARRAY[1..36] OF USINT; 
 numberOfReceivedMsgs:DWORD; 
 
END_STRUCT 
END_TYPE 
 
Below is a description of the variables: 
 
totalSatellitesInView – The total number of satellites in view.  The maximum number is 36.  Note that 
the receiver can only use up to 12 satellites for calculation of fix. 
 
satelliteIds – An array of 36 bytes that contains the PRN ids of the satellites in view.   
  
satelliteElevations – An array of 36 bytes that contains the elevation of the satellites in view.  
Maximum is 90 degrees. 
 
satelliteAzimuths – An array of 36 bytes that contains the azimuth of the satellites in view.  Maximum 
is 359 degrees. 
 
satelliteSNRs – An array of 36 bytes that contains the SNR (C/No) value of the satellites in view.  
Value 0-99 dB-Hz.  Zero when not tracking. 
 
numberOfReceivedMsgs – The number of GSV messages that has been received since the 
GPS_Init() function was called for the first time.  The value is reset when the runtime is shut down. 
 
 

8.5 GPS_RMC type 
 
Below is the declaration of the GPS_RMC data type: 
 
TYPE GPS_RMC : 
STRUCT 
 utc_Time:STRING(20); 
 valid:USINT; 
 latitude:DWORD; 
 northSouth:STRING(1); 
 longitude:DWORD; 



 
 
 
 
 

 

CCP XS GPS Library 
 Date: 051031 
 Rev: 1.0 

 
 

 

   
 Page 9 (9) 

 eastWest:STRING(1); 
 speed:REAL; 
 heading:REAL; 
 gps_Date:STRING(20); 
 magneticVariation:REAL; 
 declination:STRING(1); 
 mode:STRING(1); 
 numberOfReceivedMsgs:DWORD; 
 
END_STRUCT 
END_TYPE 
 
Below is a description of the variables: 
 
utc_time – This variable contains the UTC time as a string in the format “hhmmss.dd” where hh is 
hours, mm is minutes, ss is seconds, and is the decimal part of seconds. 
 
valid – This variable tells if the fix is valid or not.  Possible values are 1 (valid) or 0 (not valid).  If the fix 
is not valid, this means that the GPS receiver does not have enough signals from the satellites in order 
to calculate a fix. 
 
 
latitude -  This is the latitude as a DWORD.  The format is xxmmdddd where xx is degrees, mm is 
minutes, and dddd is the decimal part of minutes.  In NMEA message this value is supplied as a 
decimal value xxmm.dddd.  The value received is multiplied by 10,000 and inserted in the latitude 
variable. 
 
northSouth – This is the latitude north/south indicator as a string.  The possible values are ‘N’ (north) 
or ‘S’ (south). 
 
longitude – This is the longitude as a DWORD.  The format is yyymmdddd where yyy is degrees, mm 
is minutes, and dddd is the decimal part of minutes.  In NMEA message this value is supplied as a 
decimal value yyymm.dddd.  The value received is multiplied by 10,000 and inserted in the longitude 
variable. 
 
eastWest – This is the east/west indicator as a string. The possible values are ‘E’ (east) or ‘W’ (west). 
 
speed – Speed over ground in knots. 
 
Heading – Heading in degrees. 
 
gps_Date – String that contains date, month and year in the format ddmmyy.  dd – Date, mm – month, 
yy – year. 
 
magneticVariation – Magnetic variation in degrees.  Subtracts from heading. 
 
declination – String that contains the direction of the magnetic variation.  Either ‘W’ (west) or ‘E’ (east).  
 
mode – String that contains either ‘A’ (autonomous mode), or ‘N’ (data not valid’).  
 

 


