
 Revision: 1.0
PROGRAMMER’S GUIDE Date: Jul 1, 10
 
 

 
 
 
 
 
 
 

 

 

Programmer's guide 
 

 

 
  www.crosscontrol.com 

CrossCore XA 



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

 

Contents 

o

   
 

8.1. Configuration of device interface ..................................................................................... 42 

sscontrol.com 

 
Revision history ............................................................................................................................... 3 

1.1. Purpose ..................................................................................................................................... 4
1.  Introduction ................................................................................................................................ 4 

1.2. Conventions and defines ....................................................................................................... 4
   

1.3. References ............................................................................................................................... 4
   

1.4. Include files and libraries ........................................................................................................ 4
   
 

1.5. Floating point support ............................................................................................................ 4
 

2.  Debug card ................................................................................................................................ 5
   

2.1. J14 - Configuration header ................................................................................................... 5
 

2.2. J15 – Connection to CrossCore XA ...................................................................................... 5
   

2.3. J18 – USB Serialport ................................................................................................................. 6
   

2.4. J19 – FPGA ................................................................................................................................ 6
   

2.5. J20 – Ethernet JTAG ................................................................................................................ 6
   

2.6. J25 – ARM JTAG ....................................................................................................................... 6
   

2.7. J26 – RS232 ............................................................................................................................... 7
   

2.8. J28 – I2C .................................................................................................................................... 7
   
 

2.9. J29 – RTC Battery ..................................................................................................................... 7
 

2.10. SW1 – Factory Reset ........................................................................................................ 7
 

 
2.11.  SW2 – Bootflash Disable .................................................................................................. 7

 

3.  CAN Communication Interface ............................................................................................... 8
 

3.1. Configuration of device interface ....................................................................................... 8
 

3.2. Summary of data types ........................................................................................................ 11
   
 

3.3. Interface functions ................................................................................................................ 12
 

4.  Digital I/O Device Interface ................................................................................................... 24
   

4.1. Configuration of device interface ..................................................................................... 24
 

4.2. Summary of data types ........................................................................................................ 24
   
 

4.3. Interface functions ................................................................................................................ 24
 

5.  Power Device Interface .......................................................................................................... 29
   

5.1. Configuration of device interface ..................................................................................... 29
 

5.2. Summary of data types ........................................................................................................ 29
   

5.3. Interface functions ................................................................................................................ 29
   
 

5.4. Power signal handling .......................................................................................................... 34
 

6.  USB Device Interface ............................................................................................................... 35
   

6.1. Configuration of device interface ..................................................................................... 35
 

6.2. Summary of data types ........................................................................................................ 35
   
 

6.3. Interface functions ................................................................................................................ 35
 

7.  Front LED Device Interface ...................................................................................................... 38
   

7.1. Configuration of device interface ..................................................................................... 38
 

7.2. Summary of data types ........................................................................................................ 38
   
 

7.3. Interface functions ................................................................................................................ 38
 

8.  Accelerometer Device Interface ........................................................................................... 42

www.cr



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

8.2. Summary of data types ........................................................................................................ 42 
8.3. Interface functions ................................................................................................................ 43

 

9.  Watchdog Device Interface ................................................................................................... 46
   

9.1. Configuration of device interface ..................................................................................... 46
 

.2. Summary of data types ........................................................................................................ 46
   
 

.3.  Interface functions ................................................................................................................ 46
9  

10. erial Number Broadcast interface........................................................................................ 49
9  
 S

11. Technical support .................................................................................................................... 50
 
 

Trademark, etc. ............................................................................................................................ 50 
 

Revision history 
Rev Date Comments 
1.0 2010-07-01  

www.crosscontrol.com 3



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

1. Introduction 

1.1. Purpose 
This document contains reference information describing driver calls and APIs used when 
developing applications for the CrossCore XA product running the Linux operating system v1.0.0. 

For non-platform specific access to driver calls there is a HALIO-library[3]. For CrossControl 
specific canapi calls there is a CANAPI-library[5]. 

A good prior understanding of Linux systems and programming is needed to fully benefit from this 
documentation. 

1.2. Conventions and defines 
Text formats used in this document. 

Format Use 
Italics Paths, filenames, Product names. 
Bolded Command names and important information 
 

Is used to highlight important information. 

Common defines used in this document  
True Non-zero value 
False Zero value 
 

The term CrossCore XA is used to refer both of the device types simultaneously. 

1.3. References 
[1] CrossCore XA – Software User Guide  
[2] Codesourcery Sourcery G++ user manual 
[3] CrossCore XA – HALIO  
[4] http://openfacts.berlios.de/index-en.phtml?title=Socket-CAN  
[5] CrossCore XA – CANAPI 

1.4. Include files and libraries 
The programmer’s guide contains references to include files needed when programming the device. 
Note that these files can be downloaded separately in a development package from CrossControl 
web site. This package also includes libraries to use for application development. 

1.5. Floating point support 
CrossCore XA does not have hardware floating point support, therefore the floating point 
calculations are done by software. Codesourcery cross compiler tool chain [2] supports soft floats 
and they are also used in CrossCore XA as default floats.  

www.crosscontrol.com 4

http://openfacts.berlios.de/index-en.phtml?title=Socket-CAN


  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

2. Debug card 
For connecting and debugging software in CrossCore XA there exist a debug card. The debug card 
has several configuration alternatives and connection interfaces accessibility using jumper 
configuration.  

 

2.1. J14 - Configuration header 
Debug card has several different options that are user configurable. They are shown below. 

Pins First option Second option 
             1 – 2 
             3 – 4 

            USB Serial port 
      

             DSUB Serial port 
      

             5 – 6             JTAG Debug              JTAG Boundary scan      

             7 – 8             Enable Bootflash              Disable Bootflash 

             9 – 10             No factory reset              Factory reset 

2.2.  J15 – Connection to CrossCore XA 
J15 is used to connect debug card to actual CrossCore XA hardware with a ribbon cable provided 
with the debug card. 

 

 

 

www.crosscontrol.com 5



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

2.3. J18 – USB Serialport 
To connect to debug console, either USB or DSUB9 serial port can be used. J18 is for the USB – 
serial port. It requires external FT232 (or similar.) USB to RS232 – converter. USB and DSUB9 
serial port cannot be used at the same time. 

PIN DESC 
1 GND 
2 N/C 
3 VDD +5V 
4 TX 
5 RX 
6 N/C 
 

2.4. J19 – FPGA 
J19 provides interface to reprogram FPGA in CrossCore XA. 

PIN DESC. PIN DESC. 
1 GND 2 2.5V 
3 GND 4 FPGA TMS 
5 GND 6 FPGA TCK 
7 GND 8 FPGA TDO 
9 GND 10 FPGA TDI 
11 GND 12 N/C 
13 GND 14 N/C 
 

2.5. J20 – Ethernet JTAG 
The Ethernet JTAG is solely used for service related purposes 

2.6. J25 – ARM JTAG 
J25 is standard JTAG used for debuging software run by CPU. 

PIN DESC. PIN DESC. 
1 3.3V 2 3.3V 
3 CPU NTRST 4 GND 
5 CPU TDI 6 GND 
7 CPU TMS 8 GND 
9 CPU TCK 10 GND 
11 CPU RTCK 12 GND 
13 CPU TDO 14 GND 
15 NRST 16 GND 
17 N/C 18 GND 
19 N/C 20 GND 
 

 

 

www.crosscontrol.com 6



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

2.7. J26 – RS232 
J26 is standard DBUS RS232 – serial port for debug console. It’s alternative for J18 and they 
cannot be used at the same time. 

PIN DESC. 
2 TX 
3 RX 
5 GND 
REST N/C 
 

2.8. J28 – I2C 
I2C can be debugged via J28. 

PIN DESC. 
1 3.3V 
2 SCL 
3 SDA 
4 GND 
 

2.9. J29 – RTC Battery 
RTC battery voltage can be measured here. 

PIN DESC. 
1 BATT+ 
2 GND 
 

2.10. SW1 – Factory Reset 
Factory reset can be activated by pressing this switch when powering up the device. After turning 
power on for the device, the switch can be released. Factory reset will go through and device will 
boot to normal operation mode once the factory reset is over. 

Factory reset will remove all the data from /usr/local/ and /media/cf/. 

Warning: After factory reset device will generate new SSH keys and do other initialization, that if 
not done correctly may cause device not to function properly, so do not cut the power during this 
state and wait until unit indicates boot completion by changing status LED to green. 

2.11. SW2 – Bootflash Disable 
In case of the device software being corrupted so badly that even backup system won’t work, the 
device can be forced to internal Romboot mode where it can be reprogrammed via Serial – or USB 
– port. Press Bootflash disable – switch when powering up the device and device will enter the 
Romboot mode. After connecting power, the button can be released. 

www.crosscontrol.com 7



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

3. CAN Communication Interface 
The CAN Communication interface enables the caller to receive messages from and send messages 
to the CAN interfaces on the CrossCore XA device. The CAN communication is handled over the 
SocketCAN interface, which is a method to use standard socket API functions for CAN 
communication [4]. 

3.1. Configuration of device interface 
The device node files for the two CAN interfaces are can0 and can1, which should be shown when 
listing all network interfaces with the ifconfig command. The device driver is implemented as 
loadable kernel modules, can_dev.ko, xilinx.ko and xilinx_platform.ko. In addition, there are at 
least two CAN protocol modules providing access to the CAN protocol interface. A script handles 
the loading of the kernel modules upon start-up. 

When device has finished its start-up, the CAN driver modules are loaded as a part of the kernel. 
This can be checked via terminal access using lsmod command: 

# lsmod | egrep “can|xi l inx” 
can_raw       7552   0 
can                   23656   1 can_raw 
xi l inx_platform    2848   0 
x i l inx                   6080   1 x i l inx_platform 
can_dev          15616   1 x i l inx 

Since the driver is compiled as modules, unnecessary protocols may be removed or new modules 
inserted according to user needs. 

The CAN bus itself is not initialized during start-up, it only loads the drivers. Before any 
communications can be executed, user must set correct bus speed (as an example 250kbit/s) by 
first writing value into bitrate parameter: 

# echo 250000 > /sys/class/net/can0/can_bitt iming/bi trate 

and then setting interface up with ifconfig: 

# i fconfig can0 up 

After this, ifconfig should show can0 as a network interface: 

# i fconfig 
can0      L ink encap:UNSPEC  HWaddr 00-00-00-00-00-00 
          UP RUNNING NOARP  MTU:16  Metr ic:1 
          RX packets:0 errors :0 dropped:0 overruns:0 f rame:0 
          TX packets:0 errors :0 dropped:0 overruns:0 carr ier :0 
          col l i s ions:0 txqueuelen:10 
          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B) 
          Interrupt:49 

Same applies to the second CAN interface by changing can0 to can1. 

www.crosscontrol.com 8



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

3.1.1. Selecting CAN driver operation modes 
Starting from SW release 0.4.0.0, there are two different operation modes available for the CAN 
driver xilinx.ko: accurate mode and rapid mode. 

In accurate mode, received messages are handled one by one, which consumes more CPU time, but 
ensures accurate timestamps of received CAN frames. This mode is recommended if busload is low 
and/or there is a need to have as accurate timing as possible. 

In rapid mode, received messages are buffered on the CAN controller and handled in groups. This 
mode reduces CPU load, but since messages are stored for a while on the CAN controller, the 
resulting timestamps are affected by this period.  

Rapid mode is enabled with a module parameter given to the module at load time. Polling period is 
given in parameter as micro seconds. 

Warning: If period is set too long it will cause messages to be lost. What is too long depends on 
bus speed and bus load. 

# modprobe xi l inx rapidmode=500 

By default, the driver uses accurate mode. Operation mode cannot be changed during runtime. The 
same operation mode is always used for both CAN interfaces. 

3.1.2. Bus recovery options 
There are two options for implementing bus recovery after busoff has occurred: manual and 
automatic. 

Manual recovery is initiated by writing a non-zero value to can_restart variable under sysfs: 

echo 1 > /sys/class/net/can0/can_restart  

Bus restart is then scheduled through kernel and implemented through can-core. 

In automatic bus recovery, can-core detects state changes and re-initializes controller after 
specified time period. 

Automatic bus recovery from busoff state is turned off by default. User can turn it on via sysfs 
setting wanted restart period in milliseconds into can_restart_ms variable. For example 100ms 
restart period for can0 is set from command line like this: 

i fconfig can0 down 
echo 100 > /sys/class/net/can0/can_restart_ms 
i fconfig can0 up 

Same commands apply for can1 by replacing can0 appropriately. Period is possible to set as 
needed. Value zero turns automatic bus recovery off. 

Warning: Enabling automatic bus recovery may disturb other nodes on bus, if CAN interface is 
incorrectly initialized. 

 

www.crosscontrol.com 9



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

3.1.3. Error interrupt options 
Error interrupts are disabled by default. Enabled them by giving module parameter errorirq=1 
during module loading. By enabling error interrupts user can receive error frames. Bus off errors 
will come through even if the error interrupts are not enabled. 

# modprobe xi l inx error i rq=1 

Warning: Enabling error interrupts and sending frames when module is not connected to active 
bus may cause CAN acknowledge errors to overload CPU. User caution required. It is 
recommended to avoid sending, until one frame is received. 

3.1.4. Silent mode option 
The Xilinx platform module implements a common listen-only mode for both CAN interfaces. In 
this mode, CAN controller only listens to the CAN receive line without acknowledging the received 
messages. Sending messages is also disabled. This mode is useful for bus loggers and also needed 
for undisturbed bus communication under automatic baud rate detection. 

Silent mode can be enabled or disabled for each CAN interface using module parameter silent with 
xilinx_platform driver. 

# modprobe xi l inx_platform si lent=0x3 

Silent value is an interpret bitwise value for setting each CAN interface to listen-only mode or 
normal mode. Lowest bit is for can0 and second bit is for can1. Bit value ‘1’ is for listen-only and ‘0’ 
is for normal operation mode. In example above, both interfaces are set to listen-only mode. 

3.1.5. Automatic baud rate detection 
Automatic baud rate detection is implemented as a part of canapi library. Automatic baud rate 
detection is started by calling:  

CanHandle Handle = CanOpen("can1");  
CanSetBaudrate(Handle,  CCCAN_BAUDRATE_AUTO);  

Because canapi is running on top of SocketCAN and using a socket API, there are three limitations 
in calling automatic baud rate detection:  

1. CanSetBaudrate can be called only once with CCCAN_BAUDRATE_AUTO after driver 
modules are loaded. 

2. Other access to CAN interface under detection is disturbed by detection (interface is 
dropped during detection). 

3. Both silent mode and error interrupts must be enabled in drivers for successful baud rate 
detection. 

See CC CANAPI documentation[5] for more details. 

Detection speed depends on actual baud rate as well as bus load. Once the baud rate has been 
found the baud rate detection is disabled. 

 

www.crosscontrol.com 10



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

3.2. Summary of data types 
The following data types are needed to access SocketCAN interface from user application. Note that 
this list is only partial set of all socket features.  

SocketCAN uses its own protocol family PF_CAN coexisting with others like PF_INET. 
Communication is done analogue to the use of Internet Protocol via Sockets. The protocol family 
provide the structures to enable different protocols on the bus. 

CrossCore XA module support by default raw sockets for direct communication and broadcast 
manager (bcm) for sending messages periodically or realizing complex message filters.  

Definitions for particular protocols of the protocol family PF_CAN: 

Define Description 
CAN_RAW Raw sockets 
CAN_BCM Broadcast manager 
CAN_TP16 VAG transport protocol v1.6 
CAN_TP20 VAG transport protocol v2.0 
CAN_MCNET Bosch MCNet 
CAN_ISOTP ISO 15765-2 
 

Enum value defining raw socket protocol level options for setsockopt: 

Define Description 
CAN_RAW_FILTER = 1 Set 0..n can_filter(s) 
CAN_RAW_ERR_FILTER Set filter for error frames 
CAN_RAW_LOOPBACK Set local loopback (echo, 

default: on) 
CAN_RAW_RECV_OWN_MSGS Set receiving of own messages 

(default: off) 
 

For socket level options to use with setsockopt, see sys/socket.h. 

Definitions for CAN_ID description flags: 

Define Description 
CAN_EFF_FLAG Extended identifier flag is set 
CAN_RTR_FLAG Remote transmission request 
CAN_ERR_FLAG Error frame 
 

The interface uses following struct to transfer data to and from the driver: 

struct can_frame { 
    canid_t can_id;   /* 32 bi t CAN_ID + EFF/RTR/ERR f lags */  
    __u8    can_dlc;   /* data length code: 0 . .  8 */ 
    __u8    data[8]  __attr ibute__((al igned(8)));  /* payload */ 
};  

 

 

 

 

www.crosscontrol.com 11



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

The interface uses following struct to define sockaddr structure for CAN sockets: 

struct sockaddr_can { 
    sa_fami ly_t can_fami ly;  
    int                can_i f index; 
    union { 
        /* t ransport protocol  class address information (e.g. ISOTP) */  
        st ruct {  canid_t rx_id, tx_ id; } tp;  
 
        /* reserved for future CAN protocols address information */ 
    } can_addr; 
};  

The interface to the uses following struct to transfer define CAN id base filter: 

struct can_f i l ter {  
    canid_t can_id; 
    canid_t can_mask; 
};  

3.3. Interface functions 
SocketCAN access is similar to network socket. Only some basic functionality needed for socket 
access is introduced here. Please see general Linux socket API documentation for further 
information regarding socket communication. 

Function Description 
socket Creates a communication socket. 
bind Binds socket to a name. 
setsockopt Sets socket options. 
select Tests given socket(s) for accessibility. 
read Reads from a socket. 
recvfrom Receives from a socket (same as read). 
write Writes to a socket. 
sendto Sends to a socket (same as write). 
connect Creates a connection. 
listen Waits for incoming connection. 
accept Accepts a connection from client. 
close Closes a socket. 
 

3.3.1. socket 
Description 

Create an endpoint for communication. 

Include files 

#include <sys/socket.h> 

 

 

 

www.crosscontrol.com 12



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Syntax 

 int socket( 
    int domain, 
    int type, 
    int protocol 
 ) 

Parameters 

domain  Specifies communication domain 
type  Specifies socket type 
protocol Specifies a particular protocol to be used with the socket 

Return value 

Returns a  non-negative integer, the socket file descriptor, on success. In case of errors, -1 is 
returned and errno is set appropriately. 

Example 

The following example shows how to use SocketCAN for initial scope of CAN_RAW socket 
communication. Note that this is an example; all possible errors are not handled. 

#include  <sys/types.h> 
#include  <sys/socket.h> 
#include  <sys/ ioctl .h> 
#include  <net/i f .h> 
  
#include  <l inux/can.h> 
#include  <l inux/can/raw.h> 
#include  <str ing.h> 
  
/* Define constants, i f  not defined in the headers */ 
#i fndef PF_CAN 
#define PF_CAN 29 
#endi f 
  
#i fndef AF_CAN 
#define AF_CAN PF_CAN 
#endi f 
  
/* . . .  */  
  
/* Somewhere in your app */  
  
    /* Create the socket */  
    int skt = socket( PF_CAN, SOCK_RAW, CAN_RAW );  
  
    /* Locate the interface you wish to use */ 
    struct i f req i f r ;  
    st rcpy(i f r . i f r_name, "can0");  
    ioct l (skt, S IOCGIFINDEX, &i f r );  /* i f r . i f r_ i f index gets f i l led  
                                                        *  wi th that device's  index */ 

www.crosscontrol.com 13



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

   
    /* Select that CAN interface, and bind the socket to i t .  */  
    struct sockaddr_can addr; 
    addr.can_fami ly = AF_CAN; 
    addr.can_i f index = i f r . i f r_ i f index; 
    bind( skt, (s t ruct sockaddr*)&addr, s i zeof(addr) );  
  
    /* Send a message to the CAN bus */  
    struct can_frame frame; 
    f rame.can_id = 0x123; 
    st rcpy( &frame.data, " foo" ) ;  
    f rame.can_dlc = str len( &frame.data );  
    int bytes_sent = wr i te( skt , &frame, s i zeof(f rame) );  
   
    /* Read a message back from the CAN bus */ 
    int bytes_read = read( skt, &frame, s i zeof(f rame) );  

3.3.2. bind 
Description 

Bind a name to a socket. 

Include files 

#include <sys/socket.h> 

Syntax 

 int bind( 
    int socket,  
    const st ruct sockaddr *address,  
    socklen_t address_len 
 ) 

Parameters 

fd  Socket descriptor 
address  Pointer to sockaddr structure containing address to be bound 
address_len Specifies the length of sockaddr structure 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of socket. 

3.3.3. setsockopt 
Description 

Set socket options 

Include files 

#include <sys/socket.h> 

www.crosscontrol.com 14



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Syntax 

 int setsockopt( 
    int socket,  
    int level ,  
    int option_name, 
    const void *option_value, 
    socklen_t option_len 
 ) 

Parameters 

socket  Socket file descriptor 
level  Protocol level (SOL_CAN_RAW or similar) 
option_name Option to set, see definitions in 2.2 
option_value Pointer to new value 
option_len Specifies length of option_value 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

This example shows how to disable filters and loopback feature using setsockopt. 

    int s  = socket(PF_CAN, SOCK_RAW, CAN_RAW); 
    setsockopt(s ,  SOL_CAN_RAW, CAN_RAW_FILTER, NULL, 0);  
 
    i f  (opt == 'B ') {  
        const int loopback = 0;  
 
        setsockopt(s , SOL_CAN_RAW, CAN_RAW_LOOPBACK, 
                   &loopback, s i zeof(loopback));  
    } 

3.3.4. select 
Description 

Performs synchronous I/O multiplexing. Select is used to examine several file descriptors at once to 
determine if some of them is ready for reading, ready for writing or have an exceptional condition 
pending. 

Include files 

#include <sys/select.h> 

Syntax 

 int select( 
    int nfds,  
    fd_set *readfds, 
    fd_set *wri tefds, 
    fd_set *errorfds,  
    struct t imeval *t imeout 
 ) 

www.crosscontrol.com 15



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Parameters 

nfds  Specifies sizes of fd_set type parameters 
readfds  Read file descriptor list 
writefds Write file descriptor list 
errorfds  Error file descriptor list 
timeout  Specifies maximum wait time for select to block 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

This example shows how to use select to determine readability of sockets and how data is received 
from sockets using recvfrom(). 

fd_set rdfs ;  
int s[MAXDEV]; 
int currmax = 1; /* we assume at least one can bus */  
int running = 1 
int nbytes, i ;  
st ruct sockaddr_can addr; 
st ruct can_fi l ter r f i l ter ;  
st ruct can_frame frame; 
 
/* … Ini t ial ize sockets and set currmax to correct value in here … */ 
 
whi le (running) {  
    FD_ZERO(&rdfs);  
    for (i=0; i<currmax; i++) 
        FD_SET(s[ i ] ,  &rdfs);  
 
    i f  ((ret = select(s[currmax-1]+1, &rdfs, NULL,  NULL, NULL)) < 0) {  
        perror("select");  
        running = 0; 
        continue; 
    } 
 
    for (i=0; i<currmax; i++) {   /* check al l  CAN RAW sockets */ 
 
        i f  (FD_ISSET(s[ i ] ,  &rdfs)) {  
 
            socklen_t len = s izeof(addr);  
            int idx;  
 
            i f  ((nbytes = recvfrom(s[ i ] ,  &frame, 
                          s i zeof(struct can_frame), 0,  
                          (s truct sockaddr*)&addr, &len)) < 0) {  
                perror(" read");  
                return 1; 
            } 
 

www.crosscontrol.com 16



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

            i f  (nbytes < s i zeof(struct can_frame)) {  
                fpr intf (stderr , " read: incomplete CAN frame\n");  
                return 1; 
            } 
        } 
    } 
}  

3.3.5. read 
Description 

Read from file. 

Include files 

#include <unistd.h> 

Syntax 

 ss i ze_t read( 
    int fd, 
    void *buf,  
    s i ze_t nbyte 
 ) 

Parameters 

fd File descriptor 
buf Points to buffer where the data should be stored 
nbyte Specifies buffer length in bytes 

Return value 

Returns a non-negative integer indicating the number of bytes actually read. In case of errors, -1 is 
returned and errno is set appropriately. 

Example 

See example of socket. 

3.3.6. recvfrom 
Description 

Receive a message from a socket. If no messages are available, it shall block until a message arrives. 

Include files 

#include <sys/socket.h> 

 

 

 

 

 

www.crosscontrol.com 17



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Syntax 

 ss i ze_t recvfrom( 
    int socket,  
    void *buffer ,  
    s i ze_t length, 
    int f lags, 
    st ruct sockaddr *address,  
    socklen_t *address_len 
 ) 

Parameters 

socket  Socket file descriptor 
buffer  Points to buffer where the message should be stored 
length  Specifies the length of receive buffer 
flags  Specifies the type of message reception 
address A null pointer or points to a sockaddr structure in which the sending address is to 

be stored 
address_len Specifies the length of address structure 

Return value 

Returns length of the message in bytes on success. In case of errors, -1 is returned and errno is set 
appropriately. 

Example 

See example of select. 

3.3.7. write 
Description 

Write on file. 

Include files 

#include <unistd.h> 

Syntax 

 int wr i te( 
    int fd, 
    const void *buf,  
    s i ze_t nbyte 
 ) 

Parameters 

Fd  File descriptor 
Buf  Points to buffer containing data to write 
Nbyt  Specifies write size in bytes 

 

 

 

www.crosscontrol.com 18



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Return value 

Returns non-negative integer indicating the number of bytes actually written. In case of errors, -1 is 
returned and errno is set appropriately. 

Example 

See example of socket. 

3.3.8. sendto 
Description 

Send a message to a socket. 

Include files 

#include <sys/socket.h> 

Syntax 

 ss i ze_t sendto( 
    int socket,  
    const void *buffer,  
    s i ze_t length, 
    int f lags, 
    const st ruct sockaddr *to,  
    socklen_t tolen 
 ) 

Parameters 

socket  Socket file descriptor 
buffer  Points to a buffer containing message to send 
length  Specifies message length in bytes 
flags  Specifies the type of message transmission 
to  Specifies address of the target 
tolen  Specifies address size 

Return value 

Returns non-negative integer indicating bytes sent on success. In case of errors, -1 is returned and 
errno is set appropriately. 

Example 

This example shows how to operate bcm socket and send data to it. 

    int s l ,  sa, sc; 
    st ruct sockaddr_can caddr; 
    socklen_t caddrlen = s izeof(caddr);  
    st ruct i f req i f r ;  
 
    st ruct {  
        st ruct bcm_msg_head msg_head; 
        st ruct can_frame frame; 
    } msg; 
 

www.crosscontrol.com 19



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

    i f ((s l  = socket(PF_INET, SOCK_STREAM, 0)) < 0) {  
        perror(" inetsocket");  
        exi t(1);  
    } 
 
    /* open “regular” network socket */ 
    saddr.s in_fami ly = AF_INET; 
    saddr.s in_addr.s_addr = htonl(INADDR_ANY);  
    saddr.s in_port = htons(PORT);  
 
    whi le(bind(s l , (s truct sockaddr*)&saddr, s i zeof(saddr)) < 0) {  
        pr intf(" ." ); f f lush(NULL);  
        us leep(100000);  
    } 
 
    /* L i sten socket for a connection */ 
    i f  (l i s ten(s l ,3) != 0) {  
        perror(" l i s ten");  
        exi t(1);  
    } 
 
    whi le (1) {   
        sa = accept(s l , (st ruct sockaddr *)&cl ientaddr, &sin_s ize);  
        i f  (sa > 0 ){  
            i f  (fork())  
                close(sa);  
            else 
                break; 
        } 
    } 
 
    /* open BCM socket */ 
    i f  ((sc = socket(PF_CAN, SOCK_DGRAM, CAN_BCM)) < 0) {  
        perror("bcmsocket" );  
        return 1; 
    } 
 
    /* Connect socket */ 
    i f  (connect(sc, (struct sockaddr *)&caddr, s i zeof(caddr)) < 0) {  
        perror("connect");  
        return 1; 
    } 
 
    caddr.can_fami ly = PF_CAN; 
    caddr.can_i f index = i f r . i f r_ i f index; 
 
    whi le(1){  
        FD_ZERO(&readfds);  
        FD_SET(sc, &readfds);  
        FD_SET(sa, &readfds);  

www.crosscontrol.com 20



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

 
        ret = select((sc > sa)?sc+1:sa+1, &readfds, NULL, NULL, NULL);  
 
        i f  (FD_ISSET(sc, &readfds)) {  
            ret = recvfrom(sc, &msg, s izeof(msg), 0,  
                           (s truct sockaddr*)&caddr, &caddrlen);  
        } 
 
        i f  (FD_ISSET(sa, &readfds)) {  
            i f  (read(sa, buf+idx, 1) < 1) 
                exi t(1);  
        } 
 
        i f  (! ioct l (sc, S IOCGIFINDEX, &i fr)) {  
            /* Send message to BCM socket */  
            sendto(sc, &msg, s i zeof(msg), 0,  
                   (s truct sockaddr*)&caddr, s i zeof(caddr));  
        } 
    } 

3.3.9. connect 
Description 

Attempt to make a connection on socket. 

Include files 

#include <sys/socket.h> 

Syntax 

 int connect( 
    int socket,  
    const st ruct sockaddr *address,  
    socklen_t address_len 
 ) 

Parameters 

Socket  Socket file descriptor 
address  Points to a sockaddr structure containing the peer address 
address_len Specifies the length of the address argument 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of send. 

 

 

www.crosscontrol.com 21



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

3.3.10. listen 
Description 

Listen for socket connections and limit the queue of incoming connections. 

Include files 

#include <sys/socket.h> 

Syntax 

 int l i s ten( 
    int socket,  
    int backlog 
 ) 

Parameters 

socket  Socket file descriptor 
backlog  Provides a hint to use to limit the number of connections 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of send. 

3.3.11. accept 
Description 

Accept a new connection on a socket. 

Accept may be called to a socket that was created with socket(), has been bound to an address 
with bind(), and has issued a successful call to listen(). 

Include files 

#include <sys/socket.h> 

Syntax 

 int accept( 
    int socket,  
    st ruct sockaddr *address,  
    socklen_t *address_len 
 ) 

Parameters 

socket  Socket file descriptor 
address Either a null pointer, or a pointer to a sockaddr structure where the address of the 

connecting socket shall be returned. 
address_len Points to a socklen_t structure which on input specifies the length of the supplied 

sockaddr structure, and on output specifies the length of the stored address. 

 

www.crosscontrol.com 22



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Return value 

Returns the non-negative file descriptor of the accepted socket on success. In case of errors, -1 is 
returned and errno is set appropriately. 

Example 

See example of send. 

3.3.12. close 
Description 

Closes the file descriptor. 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

Fd  File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

    close(socket);  

 

www.crosscontrol.com 23



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

4. Digital I/O Device Interface 
There are eight digital input signals that can be monitored through ioctl() calls or the read 
function, and two digital output signals that can be controlled through ioctl() call or write 
function. 

4.1. Configuration of device interface 
The device node file for the I/O interface is /dev/digio, which is the entry point to the I/O driver. 

4.2. Summary of data types 
The interface to the digital I/O device does not need to use an explicit data type; it can simply use 
an unsigned integer. ioctl-commands use the parameter a little differently. Here is the definition of 
the parameters: 

Define Description 
CROSS_DIG_IOC_SET 16-bit unsigned integer.  

Upper 8-bit is the output-pin number, 1-8. 
Lower 8-bit is the state value of the pin, 0 or 1. 

CROSS_DIG_IOC_GET 8-bit unsigned integer. Number of input-pin to get, 1-8. 
CROSS_DIG_IOC_GET_ALL Returns 16-bit unsigned integer. 

Upper 8-bits contain values for connector 1. 
Lower 8-bits contain values for connector 2. 
In both 8 bits, lowest 4 bits are values of input pins, and bit 5 is the 
value of the output pin in that connector. 

 

4.3. Interface functions 
open  Opens the I/O device 
close  Close the I/O device 
read  Reads from the I/O device 
write  Writes to the I/O device 
ioctl  Used for reading and writing from/to device 

4.3.1. open 
Description 

Opens the I/O device. The call will return a file descriptor used in subsequent calls such as read() 
and ioctl(). 

Include files 

#include <fctnl.h> 

Syntax 

int open( 
    const char *pathname, 
    int f lags 
 ) 

 

www.crosscontrol.com 24



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Parameters 

pathname Path to the device file 

flags Parameter flag must include one of the following access modes: O_RDONLY, 
O_WRONLY or O_RDWR 

Return value 

The new file descriptor if successful. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

4.3.2. close 
Description 

Closes the file descriptor. 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

fd File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

4.3.3. read 
Description 

Reads data from the digital I/O-device. Note that the returned data is in a textual format that shows 
the status of all the digital-in signals described in the I/O map section. For example of data output, 
look at the last example listing in this chapter. 

Include files 

#include <unistd.h> 

Syntax 

ss i ze_t read( 
    int fd, 
    void *buf,  
    s i ze_t count,  
 ) 

www.crosscontrol.com 25



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Parameters 

fd File descriptor 
buf Pointer to the buffer where received data is stored 
count Number of bytes to read from the I/O-device 

Return value 

On success, the number of read bytes is returned. In case of errors, -1 is returned and errno is set 
appropriately. 

Example 

This example shows how to open a device (/dev/digio) and read data. Note that this example is 
intended to show how to make the different function calls. All possible errors are not handled. 

int fd, resul t ;  
unsigned char buffer[1000] ;  
 
/* Open device */ 
fd = open(“/dev/digio”, O_NONBLOCK | O_RDWR) 
i f (fd >= 0) 
{  
 pr intf (“open OK\n”);  
}  
else 
{  
 pr intf (“open FAILED!\n”);  
}  
 
/* Read data f rom the device */ 
resul t  = read(fd, &buffer , 512);  
i f (resul t  < 0) 
{  
 pr intf (“read ERROR!\n”);  
}  
else 
{  
 pr intf (“read OK!\n”);  
}  

Format of read data contents: 

$ cat /dev/digio 
 1 = 1 
 2 = 0 
 3 = 1 
 4 = 0 
 5 = 1 
 6 = 0 
 7 = 1 
 8 = 0 

www.crosscontrol.com 26



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

4.3.4. write 
Description 

Writes a value to a digital I/O-device. 

Include files 

#include <unistd.h> 

Syntax 

ss i ze_t wr i te( 
    int fd, 
    void *buf,  
    s i ze_t count,  
 ) 

Parameters 

fd File descriptor 
buf Code of the request 
count Number of bytes to write to the I/O device 

Return value 

On success, the number of written bytes is returned. In case of errors, -1 is returned and errno is set 
appropriately. 

Example 

Note that this example is intended to show how to make the different function calls. All possible 
errors are not handled. 

int fd, retval ;  
unsigned char buffer[1000] ;  
 
fd = open(“/dev/digio”, O_WRONLY);  
i f  (fd < 0) 
{  
  perror("Unable to open device");  
   return -1;  
}  
 
/* Set the output 1 to 0 */ 
memset(buffer, 0, 100);  
memcpy(buffer,"1 0" , 4);  
retval  = wr i te(fd, buffer , 4);  
i f  (retval  < 0) 
{  
   perror("Unable to set IO-pin");  
   return -1;  
}  
 
c lose(fd);  

www.crosscontrol.com 27



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

4.3.5. ioctl 
Description 

The ioctl function calls are used for accessing the Digital I/O - device. The available ioctl 
operations  

Define Description 
CROSS_DIG_IOC_SET Set Digital output-pin state 
CROSS_DIG_IOC_GET Get Digital input-pin state 
CROSS_DIG_IOC_GET_ALL Get state of all IO-pins at once 
 

Include files 

#include <sys/ioctl.h> 
#include “dig-io.h” 

Syntax 

 int ioctl ( 
    int fd, 
    int request,  
    void *argp 
 ) 

Parameters 

Fd  File descriptor 
Request  Code of the request 
Argp  Used for transferring data in the ioctl call. In this case it is an integer. 

Return value 

Returns a positive value on success. In case of errors, -1 is returned and errno is set appropriately.  

Example 

This example shows a range of different configuration settings by calling ioctl(). All possible errors 
are not handled, since the purpose of the example is to explain how the calls are made. 

int fd, resul t ;  
int data; 
 
/* Open device */ 
fd = open(“/dev/digio”, O_RDWR | O_NONBLOCK); 
 
/* Read from device -  Get input 3 state*/ 
data = 3; 
 
resul t  = ioctl (fd, CROSS_DIG_IOC_GET, data);  
 
/* Wri te to device – Set Output pin 2 to 1 */ 
data = (2 << 8) | 1;  
 
resul t  = ioctl (fd, CROSS_DIG_IOC_SET, data);  

www.crosscontrol.com 28



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

5. Power Device Interface 
There is a set of built-in modules, which have their supply power controlled by ioctl() calls or the 
write function. Also the device power supply state has a couple of state signals, which can be 
accessed through this interface. 

5.1. Configuration of device interface 
The device node file for the I/O interface is /dev/cross_pwr_io, which is the entry point to the 
PWR driver. 

5.2. Summary of data types 
The interface to the PWR IO device does not need to use an explicit data type, simply use an 
unsigned integer. ioctl-commands use the parameter a little differently. Here is the definition: 

Define Description 
CROSS_PWR_IOC_SET_PWR_STATE 16-bit unsigned integer. Upper 8 – bit is PWR_PIN number. 

Lower 8-bit is the state of the pin. 
CROSS_PWR_IOC_GET_PWR_STATE 8-bit unsigned integer, stating the number of PWR_PIN to get. 
CROSS_PWR_IOC_GET_PWRFAIL_ST
ATUS 

Return either true if the pwr fail is active or false if the pwr fail 
status is not active 

CROSS_PWR_IOC_GET_OVERVOLT
AGE_STATUS 

Return either true if the overvoltage is active or false if the 
overvoltage is not active 

CROSS_PWR_IOC_GET_SIGNAL Return status of which event caused the signal. Power down is 
bit 0 and over voltage is bit 2. 

CROSS_PWR_IOC_SET_SIGNAL Set the signal handler that is called when power signals 
change state. Argument is pointer to set_pwr_signal_struct. 
typedef struct { 
 uint32 sig; /* Signal number to be used */ 
 uint32 pid; /* Process ID of the handler */ 
} set_pwr_signal_struct; 

 

PWR_STATE_PINS enum; the PWR_PIN number used by read/write/ioctl: 

PWR_PIN_ETH = 0 Ethernet adapter 
PWR_PIN_WLAN = 1 WLAN card 
PWR_PIN_ADDON = 2 Addon card 
PWR_PIN_CAN = 3 CAN module 
PWR_PIN_USB = 4 USB module 
PWR_PIN_GPRS = 5 GSM/GPRS modem 
 

5.3. Interface functions 
open  Opens the I/O device 
close  Closes the I/O device 
read  Reads from the I/O device 
write  Writes to the I/O device 
ioctl  Used for reading and writing from/to device 

 

www.crosscontrol.com 29



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

5.3.1. open 
Description 

Opens the PWR device. The call will return a file descriptor used in subsequent calls such as read() 
and ioctl(). 

Include files 

#include <fctnl.h> 

Syntax 

int open( 
    const char *pathname, 
    int f lags 
 ) 

Parameters 

Pathname Path to the device file 
Flags Parameter flag must include one of the following access modes: O_RDONLY, 

O_WRONLY or O_RDWR 

Return value 

The new file descriptor if successful. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

5.3.2. close 
Description 

Closes the file descriptor 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

fd File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

www.crosscontrol.com 30



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

5.3.3. read 
Description 

Reads data from the PWR-device. Note that the returned data is in a kind of textual format that 
shows the status of all the PWR-states. 

Include files 

#include <unistd.h> 

Syntax 

ss i ze_t read( 
    int fd, 
    void *buf,  
    s i ze_t count,  
 ) 

Parameters 

fd  File descriptor 
buf  Pointer to the buffer where received data is stored 
count  Number of bytes to read from the PWR-device 

Return value 

On success, the number of read bytes is returned. In case of errors, -1 is returned and errno is set 
appropriately. 

Example 

This example shows how to open a device (/dev/cross_pwr_io) and read data. Note that this 
example is intended to show how to make the different function calls. All possible errors are not 
handled. 

int fd, resul t ;  
uns igned char buffer[1000] ;  
 
/* Open device */ 
fd = open(“/dev/cross_pwr_io”, O_NONBLOCK | O_RDWR) 
i f (fd >= 0) 
{  
 pr intf (“open OK\n”);  
} else {  
 pr intf (“open FAILED!\n”);  
}  
 
/* Read data f rom the device */ 
resul t  = read(fd, &buffer , 512);  
i f (resul t  < 0) 
{  
 pr intf (“read ERROR!\n”);  
} else {  
 pr intf (“read OK!\n”);  
}  

www.crosscontrol.com 31



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

5.3.4. write 
Description 

Writes a value to a PWR-device. Values can be set on or off independently. 

Include files 

#include <unistd.h> 

Syntax 

ss i ze_t wr i te( 
    int fd, 
    void *buf,  
    s i ze_t count,  
 ) 

Parameters 

fd File descriptor 
buf Code of the request 
count Number of bytes to write to the front LED device 

Return value 

On success, the number of written bytes is returned. In case of errors, -1 is returned and errno is set 
appropriately. 

Example 

Note that this example is intended to show how to make the different function calls. All possible 
errors are not handled. 

int fd, retval ;  
 
fd = open(“/dev/cross_pwr_io”, O_WRONLY); 
i f  (fd < 0) 
{  
  perror("Unable to open cross_pwr_ io");  
   return -1;  
}  
 
/* Set the output 0(Eth) to 0 */ 
memset(resp_buf, 0, 100);  
memcpy(resp_buf,"0 0" , 4);  
retval  = wr i te(fd, resp_buf, 4);  
i f  (retval  < 0) 
{  
   perror("Unable to set PWR-state");  
   return -1;  
}  
 
c lose(fd);  

www.crosscontrol.com 32



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

5.3.5. ioctl 
Description 

The ioctl function calls are used for accessing the I/O device at different offsets. The available ioctl 
operations are summarized in the table below. 

Define Description 
CROSS_PWR_IOC_GET_PWRFAIL_STATUS Get low power – pin state 
CROSS_PWR_IOC_GET_OVERVOLTAGE_
STATUS    

Get over voltage – pin state 

CROSS_PWR_IOC_GET_SIGNAL Get source what caused signal 
CROSS_PWR_IOC_SET_SIGNAL Register signal handler. Only one process can register 

signal handler. Note! Before closing the driver, remove 
handler by setting both pid and signal number to zero. 

CROSS_PWR_IOC_GET_PWR_STATE Get power state of specific subsystem 
CROSS_PWR_IOC_SET_PWR_STATE Set power state of specific subsystem 
 
Include files 

#include <sys/ioctl.h> 
#include “pwr-io.h” 

Syntax 

 int ioctl ( 
    int fd, 
    int request,  
    void *argp 
 ) 

Parameters 

fd  The file descriptor 
request  The code of the request 
argp  Used for transferring data in the ioctl call.  

Return value 

Returns a positive value on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

This example shows a range of different configuration settings by calling ioctl(). All possible errors 
are not handled, since the purpose of the example is to explain how the calls are made. 

int fd, resul t ;  
 
/* Open device */ 
fd = open(“/dev/cross_pwr_io”, O_RDWR | O_NONBLOCK); 
 
/* Read from device -  Get power state for Eth */ 
resul t  = ioctl (fd, CROSS_PWR_IOC_GET_PWR_STATE, PWR_PIN_ETH);  
 
/* Wri te to device – Set power state for Wlan */ 
data = (PWR_PIN_WLAN << 8) | 0;  
 
result  = ioctl (fd, CROSS_PWR_IOC_SET_PWR_STATE, data);  

www.crosscontrol.com 33



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

5.4. Power signal handling 
There are two signals that user applications can use for monitoring status of the power supply 
voltage. When either one of them activates, the application should call the power interface to turn 
off all unnecessary built-in peripherals, in order to preserve power. 

Then program should start writing any modified data to file, close all open files as soon as possible 
and exit. As a last action, the program should initiate system shutdown by calling post-
powerfailure. System shutdown will kill all other tasks and remount file systems as read-only. 

5.4.1. Configuring signal handler 
Signal handler is registered through /dev/cross_pwr_io – device’s ioctl call 
CROSS_IOC_SET_SIGNAL. The handler receives reason for the signal as an argument. 

Argument bitfield 

Define Description 
POWER_DOWN_SIGNAL Power down occurred 
OVERVOLTAGE_SIGNAL Overvoltage occurred 
 
It is possible to have only one or both reasons active at the same time, especially in case of 
overvoltage. 

Example 

This example shows a very simple signal handler. All possible errors are not handled, since the 
purpose of the example is to explain how the calls are made. 

int fd, resul t ;  
set_pwr_s ignal_struct pwrs ig; 
int pwr_state = 0; 
 
void power_fai lure_handler(int state) 
{  
 pwr_state = state;  
}  
 
pwrs ig.pid = getpid();  
pwrs ig.s ig = CROSS_PWR_SIG_INTERFACE; 
 
fd = open(“/dev/cross_pwr_io”, O_RDWR | O_NONBLOCK); 
 
/* Register power fai lure s ignal  handler */ 
result = ioctl (fd, CROSS_PWR_IOC_SET_SIGNAL, &pwrs ig);  
 
/* Wait for  s ignal  */ 
whi le(!pwr_state) {  
 s leep(1);  
}  
 
i f  (pwr_state) {  
 system(“/usr/bin/post-powerfai lure”);  
}  

www.crosscontrol.com 34



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

6. USB Device Interface 
Whether or not a USB device is connected to the USB host can be detected using ioctl() calls. 

6.1. Configuration of device interface 
The device node file for the USB interface is /dev/cross_usb_io, which is the entry point to the 
USB driver. 

6.2. Summary of data types 
The interface to the USB IO device does not need to use an explicit data type, simply use an 
unsigned integer. ioctl-commands use the parameter a little differently. Here is the definition: 

Define Description 
CROSS_USB_IOC_USB_STATUS Return either true if USB is connected or false if USB is not 

connected. 
CROSS_USB_IOC_GET_SIGNAL Return status of which event caused the signal. USB connected 

is bit 0. 
CROSS_USB_IOC_SET_SIGNAL Set the signal handler that is called when power signals change 

state. Argument is pointer to set_usb_signal_struct. 
typedef struct { 
 uint32 sig; /* Signal number to be used */ 
 uint32 pid; /* Process ID of the handler */ 
} set_usb_signal_struct; 

 

6.3. Interface functions 
open  Opens the I/O device 
close  Closes the I/O device 
ioctl  Used for reading and writing from/to device 

6.3.1. open 
Description 

Opens the I/O device. The call will return a file descriptor used in subsequent calls such as read() 
and ioctl(). 

Include files 

#include <fctnl.h> 

Syntax 

int open( 
    const char *pathname, 
    int f lags 
 ) 

Parameters 

pathname Path to the device file 
flags Parameter flag must include one of the following access modes: O_RDONLY, 

O_WRONLY or O_RDWR 

www.crosscontrol.com 35



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Return value 

The new file descriptor if successful. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

6.3.2. close 
Description 

Closes the file descriptor 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

fd  File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

www.crosscontrol.com 36



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

6.3.3. ioctl 
Description 

The ioctl function calls are used for accessing the I/O device at different offsets. The available ioctl 
operations are summarized in the table below. 

Define Description 
CROSS_USB_IOC_GET_USB_STATUS Get USB connected – pin state 
CROSS_USB_IOC_GET_SIGNAL Get source what caused signal 

CROSS_USB_IOC_SET_SIGNAL 
Register signal handler. Only one process can register signal 
handler. Note! Before closing the driver, remove handler by 
setting both pid and signal number to zero! 

 

Include files 

#include <sys/ioctl.h> 
#include “usb-io.h” 

 
Syntax 

 int ioctl ( 
    int fd, 
    int request,  
    void *argp 
 ) 

Parameters 

fd  File descriptor 
request  Code of the request 
argp  Used for transferring data in the ioctl call 

Return value 

Returns a positive value on success. In case of errors, -1 is returned and errno is set appropriately.  

Example 

This example shows the different configuration settings by calling ioctl(). All possible errors are 
not handled, since the purpose of the example is to explain how the calls are made. 

int fd, resul t ;  
 
/* Open device */ 
fd = open(“/dev/cross_usb_io”, O_RDWR | O_NONBLOCK); 
 
/* Read from device -  Get power state for Eth */ 
resul t  = ioctl (fd, CROSS_USB_IOC_GET_USB_STATUS, NULL);  
 

 

www.crosscontrol.com 37



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

7. Front LED Device Interface 
The CrossCore XA device has user controllable LED in the front. It can be set to flash at 1-50 Hz, or 
to be constantly on or off. Device also has two CAN leds that can be controlled through ioctl() 
calls. 

7.1. Configuration of device interface 
The front and CAN LED driver is accessed through device node /dev/frontled. 

7.2. Summary of data types 
The interface to the front LED device doesn’t need to use an explicit data type, simply use an 
unsigned integer. The unsigned integer values are explained in the following table: 

Define Description 
CROSS_DIG_IOC_SET_STATUS_LED Set the state of the front LED. 16-bit unsigned integer.  

Upper 8 – bit contains the LED color to control (0 = RED, 1 = 
GREEN, 2 = AMBER).  
Lower 8 - bit containing the LED flash interval in Hertz (0 = off, 1-
50 = valid Hertz, >50 = constantly on) 

CROSS_DIG_IOC_SET_CAN0_LED Set state of the CAN0 LED. 16-bit unsigned integer.  
Upper 8 – bit contains the LED color to control (0 = RED, 1 = 
GREEN, 2 = AMBER).  
Lower 8 - bit containing the LED flash interval in Hertz (0 = off, 1-
50 = valid Hertz, >50 = constantly on) 

CROSS_DIG_IOC_SET_CAN1_LED Set state of the CAN1 LED. 16-bit unsigned integer.  
Upper 8 – bit contains the LED color to control (0 = RED, 1 = 
GREEN, 2 = AMBER).  
Lower 8 - bit containing the LED flash interval in Hertz (0 = off, 1-
50 = valid Hertz, >50 = constantly on) 

7.3. Interface functions 
open  Opens the front LED device 
close  Closes the front LED device 
write  Writes to the front LED device 
ioctl  Writes to the front LED device through a specific function call 

www.crosscontrol.com 38



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

7.3.1. open 
Description 

Opens the front LED device. The call will return a file descriptor used in subsequent calls such as 
write() or close(). 

Include files 

#include <fctnl.h> 

Syntax 

int open( 
    const char *pathname, 
    int f lags 
 ) 

Parameters 

pathname Path to the device file 
flags Parameter flag must include one of the following access modes: O_RDONLY, 

O_WRONLY or O_RDWR 

Return value 

The new file descriptor if successful. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of write. 

7.3.2. close 
Description 

Closes the file descriptor. 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

fd  File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of write. 

www.crosscontrol.com 39



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

7.3.3. write 
Description 

Writes a value to the front LED device. It can be set to off, on or flashing in the range (1-50 Hz). 
Writing the value “0” will turn the front LED off. A value of “51” or higher will turn on the front 
LED constantly on. String values in the range “1” to “50” will make the front LED flash. 

Include files 

#include <unistd.h> 

Syntax 

ss i ze_t wr i te( 
    int fd, 
    void *buf,  
    s i ze_t count,  
 ) 

Parameters 

fd  File descriptor 
buf  Code of the request 
count  Number of bytes to write to the front LED device 

Return value 

On success, the number of written bytes is returned. In case of errors, -1 is returned and errno is set 
appropriately. 

Example 

Note that this example is intended to show how to make the different function calls. All possible 
errors are not handled. 

int fd, retval ;  
 
fd = open("/dev/frontled" , O_WRONLY); 
i f  (fd < 0) 
{  
  perror("Unable to open front led");  
   return -1;  
}  
 
/* Configure the RED front led to f lash in 10 Hz */ 
memset(resp_buf, 0, 100);  
memcpy(resp_buf,"10 0" , 5);  
retval  = wr i te(fd, resp_buf, 5);  
i f  (retval  < 0) 
{  
   perror("Unable to set f ront led");  
   return -1;  
}  
 
c lose(fd);  
 

www.crosscontrol.com 40



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

7.3.4. ioctl 
Description 

An ioctl function call can be used for setting the state of the front LED.  It has only one data type 
which was covered in section 7.2. The available ioctl operations are listed in the table below. 

Define Description 
CROSS_DIG_IOC_SET_STATUS_LED Set the state of the front LED 
CROSS_DIG_IOC_SET_CAN0_LED Set the state of the CAN0 LED 
CROSS_DIG_IOC_SET_CAN1_LED Set the state of the CAN1 LED 
 
Include files 

#include <sys/ioctl.h> 
#include <dig-io.h> 

Syntax 

 int ioctl ( 
    int fd, 
    int request,  
    void *argp 
 ) 

Parameters 

fd  File descriptor 
request  Code of the request 
argp  Used for transferring data in the ioctl call. In this case it is an integer. 

Return value 

Returns a positive value on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

This example shows how to operate the frontled by calling ioctl().Note that this example is 
intended to show how to make the different function calls. All possible errors are not handled. 

hertz = 2; /* S low f lashing */ 
data = (LED_RED << 8) | hertz ;  
fd = open("/dev/frontled" , O_RDWR); 
 
i f (! fd)  
{  
    pr intf("Open /dev/frontled fai led\n");  
    return 0; 
}  
res = ioctl (fd, CROSS_DIG_IOC_SET_STATUS_LED, data);  
i f (res < 0)  
{  
    pr intf("F rontled set error : %d\n", res);  
} else {  
    pr intf("F rontled set to %d\n", hertz);  
}  
close(fd);  

www.crosscontrol.com 41



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

8. Accelerometer Device Interface 
The CrossCore XA device can have built-in accelerometer. It can used to detect sudden changes in 
acceleration. It can be controlled through ioctl() calls. 

Note: The accelerometer is available as an optional module and may not be available on your unit. 

8.1. Configuration of device interface 
The accelerometer driver is accessed through device node /dev/accelerometer. 

8.2. Summary of data types 
The interface to the uses following struct to transfer data to and from the driver: 

typedef struct smb380face_tag { 
  /////////  t r iggering interface 
  uint16 tr igger_count;  
  //  thi s  i s  a counter, incremented upon every detected tr igger. One way to  
  //  noti fy tr igger i s  to per iodical ly pol l  thi s  value and see i f  i t  has changed. 
 
  int32 tr igger_cl ient_pid; 
  //  I f  thi s i s  set nonzero, i t  i s  taken as a pid to send a s ignal  to when  
  // acceleration survei l lance tr iggers .  
 
  int32 tr igger_s igno;  
  //  I f  t r igger_cl ient_pid != 0, thi s i s  the s ignal  to send 
 
  uint8 tr igger_s ignal_latch; 
  //  Everytime s ignal should be sent, thi s latch i s  examined.  
  //  I f  the value i s zero, s ignal  i s  sent and this  f lag is  raised. 
  //  In order to receive s ignal  again, thi s  f lag has to be set zero again, 
  //  by the s ignal handler for example. Thi s  arrangement i s  solely for 
  //  avoiding unwanted signal  f looding.  
 
  //////// Update operational  sett ings 
 
  uint8 update;  
  //  Thi s  i s  a f lag that dr iver moni tors  per iodical ly. I f  f lag i s nonzero, 
  //  operational  parameters (defined below) wi l l  be taken as new sett ings 
  //  and the chip i s  adjusted accordingly.  
 
  u int8 update_count;  
  //  After chip i s armed with new sett ings, this  counter i s  incremented 
  //  to denote succesful  update. 
 
  //////// Operational  parameters   
 
  //  physical  character i st ics 
  uint8 range;  // SMB380_RANGE_xG 
  uint8 bandwidth; // SMB380_BANDWIDTH_xHZ 
 

www.crosscontrol.com 42



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

  u int8 survei l lance_strategy;  //  bi t-or 'ed survei l lance strategie(s) to arm 
 
  // high gain threshold mode stuff  (see SMB380 datasheet for more detai l s) 
  uint16 HG_thres;  
  uint16 HG_hyst;  
  uint16 HG_dur;  
  u int16 HG_debounce_mode; 
 
  // any motion mode stuff  (see SMB380 datasheet for more detai l s) 
  uint8 any_motion_dur;  
  uint8 any_motion_thres; 
} __attr ibute__((packed)) smb380face; 

8.3. Interface functions 
open  Opens the accelerometer device 
close  Closes the accelerometer device 
mmap  Maps accelerometer device into memory 

8.3.1. open 
Description 

Opens the accelerometer device. The call will return a file descriptor used in subsequent calls such 
as mmap(), close(). 

Include files 

#include <fctnl.h> 

Syntax 

int open( 
    const char *pathname, 
    int f lags 
 ) 

Parameters 

pathname Path to the device file 
flags  Parameter flag must include following access modes: O_RDWR and O_SYNC 

Return value 

The new file descriptor if successful. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of mmap. 

8.3.2. close 
Description 

Closes the file descriptor. 

 

www.crosscontrol.com 43



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

fd  File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of mmap. 

8.3.3. mmap 
Description 

Maps accelerometer device into a memory for user access. 

Include files 

#include <sys/mman.h> 
#include <smb380face.h> 

Syntax 

void* mmap( 
    void *start,  
    s i ze_t length, 
    int prot,  
    int f lags, 
    int fd, 
    off_t  offset 
 ) 

Parameters 

start  Start of the virtual address. NULL=Let kernel choose 
length  Length of the mapped memory 
prot  Desired memory protections 
flags Flags to determne whether updates to the mapping are visible to other processes 

mapping the same region 
fd  File descriptor 
offset  Offset of the file where mapping should start 
count  Number of bytes to write to the front LED device 

Return value 

On success, the number of written bytes is returned. In case of errors, -1 is returned and errno is set 
appropriately. 

www.crosscontrol.com 44



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Example 

Note that this example is intended to show how to make the different function calls. All possible 
errors are not handled. 

int fd, retval ;  
int mmapsize = s izeof(smb380face); 
smb380face* modules = 0; 
 
#define TRIGGER_SIGNAL SIGUSR2 
 
void handle_tr igger(int sno) {  
 pr intf ("Tr igger s ignal  received!\n");  
}  
 
fd = open("/dev/accelerometer" , O_RDWR|O_SYNC); 
 
modules = mmap(0, mmapsize, PROT_READ|PROT_WRITE, 
MAP_SHARED|MAP_LOCKED, fd, 0);  
 
s ignal(TRIGGER_SIGNAL,handle_tr igger);  
 
modules->update = 1;  
modules->tr igger_cl ient_pid = getpid();  
modules->tr igger_signo = TRIGGER_SIGNAL; 
modules->tr igger_signal_latch = 0;  
 
s leep (30);  
 
modules->tr igger_cl ient_pid = 0; 
close(fd);  

www.crosscontrol.com 45



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

9. Watchdog Device Interface 
The device has a watchdog device, which can be used to reset the device in case if the software does 
not respond in predefined time. The watchdog device can be controlled through ioctl() calls. 

9.1. Configuration of device interface 
The device node file for the Watchdog device is /dev/watchdog, which is the entry point to the 
Watchdog driver. 

By default the watchdog is taken care by specific watchdog kicker software called wdt. If user 
software wants to take over the watchdog handling, then wdt task should be killed first (for 
example killall wdt). If the user software does not want to handle the watchdog anymore, then the 
wdt should be restarted. Wdt is started at start-up every time if the watchdog timeout is something 
other than zero. 

Watchdog timeout is 16 seconds by default. Timeout can be changed from a file 
/etc/watchdog_timeout.conf. Value should be between 0 (=disabled) and 16. 

9.2. Summary of data types 
The interface to the Watchdog device doesn’t use parameters in ioctl-calls.  

9.3. Interface functions 
open  Opens the watchdog device 
close  Closes the watchdog device 
ioctl  Used for reading and writing from/to device 

9.3.1. open 
Description 

Opens the watchdog device. The call will return a file descriptor used in subsequent calls such as 
read() and ioctl(). 

Include files 

#include <fctnl.h> 

Syntax 

int open( 
    const char *pathname, 
    int f lags 
 ) 

Parameters 

pathname Path to the device file 
flags Parameter flag must include one of the following access modes: O_RDONLY, 

O_WRONLY or O_RDWR 

 

 

www.crosscontrol.com 46



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Return value 

The new file descriptor if successful or -1 if an error occurred. In case of error, errno is set 
appropriately. 

Example 

See example of ioctl. 

9.3.2. close 
Description 

Closes the file descriptor 

Include files 

#include <unistd.h> 

Syntax 

 int close( 
    int fd 
 ) 

Parameters 

fd File descriptor 

Return value 

Returns zero on success. In case of errors, -1 is returned and errno is set appropriately. 

Example 

See example of ioctl. 

9.3.3. ioctl 
Description 

The ioctl function calls are used for accessing the Watchdog. The available ioctl operations are 
summarized in the table below. 

Define Description 
WDIOC_KEEPALIVE Pat the dog to keep it from waking 
WDIOC_GETTIMEOUT Get the current watchdog timeout 
 

Include files 

#include <sys/ioctl.h> 
#include <linux/watchdog.h> 

Syntax 

 int ioctl ( 
    int fd, 
    int request,  
    void *argp 
 ) 

www.crosscontrol.com 47



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

Parameters 

fd  File descriptor 
request  Code of the request 
argp  Used for transferring data in the ioctl call.  

Return value 

Returns a positive value on success. On error, -1 is returned and errno is set appropriately.  

Example 

This example shows a way for kicking watchdog by calling ioctl(). All possible errors are not 
handled, since the purpose of the example is to explain how the calls are made. 

int fd, resul t ,dummy; 
 
/* Open device */ 
fd = open(“/dev/watchdog”, O_RDWR | O_NONBLOCK); 
 
/* Pat the watchdog */ 
resul t  = ioctl (fd, WDIOC_KEEPALIVE, &dummy);  

 

www.crosscontrol.com 48



  
CrossCore XA Revision: 1.0 
Programmers Guide Date: Jul 1, 10 
 

www.crosscontrol.com 49

10. Serial Number Broadcast interface 
Device has Serial Number Broadcast service.  SNB does not have programming interface at the 
device end, but the broadcasted data output can be handled elsewhere, even in another CrossCore 
XA device if required. 

The message sent is a multicast UDP datagram to address 224.0.0.27. The message contains a char 
array with three values separated by tabs; Serial number, Firmware version and Device type. The 
sender IP address is available in datagram headers. 

Example data contents (without quotes): 

“PR01<tab>0.3.0<tab>0” 

An example implementation of the data listener is available in CrossCore XA development package 
in example_src/snb/snb_reader.c 



 

 

CrossControl AB 
P.O. Box 83 • SE-822 22 Alfta • Sweden 
Phone: +46 271 75 76 00• info@crosscontrol.se • www.crosscontrol.com 

 

 

11. Technical support  
Contact your reseller or supplier for help with possible problems with your CrossCore XA device. In 
order to get the best help, you should have access to your CrossCore XA device and be prepared 
with the following information before you contact support.  

• The part number and serial number of the device, which you find on the brand label 

• Date of purchase, which is found on the invoice 

• The conditions and circumstances under which the problem arises 

• LED indicator flash patterns. 

• CrossCore XA device log files (if possible)  

• Description of external equipment which is connected to the CrossCore XA 

 

 

 

 

 

 

Trademark, etc. 
© 2006-2010 CrossControl AB 

All trademarks sighted in this document are the property of their respective owners. 

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. 

CrossControl AB is not responsible for editing errors, technical errors or for material which has 
been omitted in this document. CrossControl is not responsible for unintentional damage or for 
damage which occurs as a result of supplying, handling or using of this material. The information in 
this handbook is supplied without any guarantees and can change without prior notification. 

 


	Revision history
	1. Introduction
	1.1. Purpose
	1.2. Conventions and defines
	1.3. References
	1.4. Include files and libraries
	1.5. Floating point support

	2. Debug card
	2.1. J14 - Configuration header
	2.2.  J15 – Connection to CrossCore XA
	2.3. J18 – USB Serialport
	2.4. J19 – FPGA
	2.5. J20 – Ethernet JTAG
	2.6. J25 – ARM JTAG
	2.7. J26 – RS232
	2.8. J28 – I2C
	2.9. J29 – RTC Battery
	2.10. SW1 – Factory Reset
	2.11. SW2 – Bootflash Disable

	3. CAN Communication Interface
	3.1. Configuration of device interface
	3.1.1. Selecting CAN driver operation modes
	3.1.2. Bus recovery options
	3.1.3. Error interrupt options
	3.1.4. Silent mode option
	3.1.5. Automatic baud rate detection

	3.2. Summary of data types
	3.3. Interface functions
	3.3.1. socket
	3.3.2. bind
	3.3.3. setsockopt
	3.3.4. select
	3.3.5. read
	3.3.6. recvfrom
	3.3.7. write
	3.3.8. sendto
	3.3.9. connect
	3.3.10. listen
	3.3.11. accept
	3.3.12. close


	4. Digital I/O Device Interface
	4.1. Configuration of device interface
	4.2. Summary of data types
	4.3. Interface functions
	4.3.1. open
	4.3.2. close
	4.3.3. read
	4.3.4. write
	4.3.5. ioctl


	5. Power Device Interface
	5.1. Configuration of device interface
	5.2. Summary of data types
	5.3. Interface functions
	5.3.1. open
	5.3.2. close
	5.3.3. read
	5.3.4. write
	5.3.5. ioctl

	5.4. Power signal handling
	5.4.1. Configuring signal handler


	6. USB Device Interface
	6.1. Configuration of device interface
	6.2. Summary of data types
	6.3. Interface functions
	6.3.1. open
	6.3.2. close
	6.3.3. ioctl


	7. Front LED Device Interface
	7.1. Configuration of device interface
	7.2. Summary of data types
	7.3. Interface functions
	7.3.1. open
	7.3.2. close
	7.3.3. write
	7.3.4. ioctl


	8. Accelerometer Device Interface
	8.1. Configuration of device interface
	8.2. Summary of data types
	8.3. Interface functions
	8.3.1. open
	8.3.2. close
	8.3.3. mmap


	9. Watchdog Device Interface
	9.1. Configuration of device interface
	9.2. Summary of data types
	9.3. Interface functions
	9.3.1. open
	9.3.2. close
	9.3.3. ioctl


	10. Serial Number Broadcast interface
	11. Technical support 
	Trademark, etc.

